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Preface

A thesis is a work of long breath1. During the past five years, I have worked
on this project. In this book you can find my process in learning about and
contributing to the numerical study of Schrödinger equations.

This thesis is written from quite a technical perspective and is definitely not
suited as an introductory text to the subject. Following along will require quite
a lot of background knowledge. The text assumes you are already familiar with
(partial) differential equations, numerical methods for solving these and the
intricacies when implementing them. If you want to know all advances written
in this work, then reading the book cover to cover may be the best way. I tried
to logically structure the work with sufficient cross-references and citations.

If however you are still interested in reading this book without a deep technical
knowledge, then I recommend skipping the more technical discussions. Starting
with the summary will provide you with a basic overview about what you
can expect from this work. Chapter 1 gives some historical context about
mathematical evolution and in particular about the conception of differential
equations. Chapters 2, 3 and 4 contain the innovations from this thesis. Each
of these chapters starts with some historical background and mathematical
motivation, and ends with some numerical experiments to evaluate the perfor-
mance (both in accuracy as efficiency) of our methods. For simply a cursory
examination of my research, these first and last sections may be sufficient.

If you are still interested in this thesis, however not so much in the mathematics,
even then I can provide some guidance on how to read it. I assume you are more
interested in doing research in general or even in me personally. In this case

1This is a literal translation of the Dutch expression: ‘Een werk van lange adem’.
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you may2 just skip chapters 2, 3 and 4 entirely. The summary and chapter 1
may provide sufficient context. For some personal notes, I recommend taking a
look at the closing remarks at the end of this work as well.

In the introductory paragraph I stated that this research came into fruition
within the past five years. In the most literal sense, this is of course true.
Practically however, doing research is quite an individual pursuit, and as such
it is quite a personal one. Each researcher is different and experiences the
world around them uniquely. This difference, in part, relies on the background
of the (mathematical) education of the researcher. In my case, I think I can
say that my ‘mathematical career’ started a good fifteen years ago. My interest
in and passion for mathematics became abundantly clear3 throughout high
school. My mathematical adventure really took off when I started at Ghent
University. Now, ten years later, I can close this chapter with the completion
of a PhD in mathematics.

Acknowledgement
Even though doing research is quite a lonely process, I was never alone. There
are many people who let me find myself and helped me grow. Here I want to
seize the opportunity to thank them wholeheartedly.

First and foremost I want to thank my very best friend. Emilie has always4

been here for me. Without her, even survival would be difficult. She encourages
me to pursue all my dreams and ambitions, she possesses the curiosity to listen
to all my ramblings, and she understands me. Maybe not so much when I
am saying nonsense, but even then she understands me. She has the same
wandering mind as mine, only in a uniquely different way. She broadens my
horizons and is not afraid to tell me when I am wrong5. Lieve Floe, dank je
wel; een eenvoudige, toch zeer diepe en welgemeende “Dank je.”.

Concerning the content of this work, Marnix has been invaluable. As a promotor,
he was a true guide. He gave me all the tools necessary during this research.

2Of course, as the owner of a book you can read it however you want (or even burn it).
So, not that you need it, but you definitely have my permission to skip (large) parts, if they
are not of interest to you.

3To the detriment of the non-science courses.
4At least, as long as I can remember.
5I have absolutely no problem admitting when I am wrong. I believe my challenge is to

see when I am wrong.
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He granted me the freedom to explore all6 my ideas and side projects. At
times, he even poured gasoline on the fire by encouraging me to create some
unimaginably beautiful images. Nonetheless, he always guided me back. Marnix
kept motivating me to write down my ideas into articles, and he was rightly
critical about my first drafts. As an example, my first draft of chapter 4 (now
54 pages) was a mere two pages of only mathematical notation, without context.
As my copromotor, I also thank Joris. When communication stalled, with only
a few words, he got everything back on track.

As stated earlier, while researching and learning new things I depend on my
background. Thanks to my parents and family, this is such a rich background.
Mama, Papa, dank je wel. Dank je, om me alle ruimte te geven om zelf op
zoek te gaan, om in me te geloven en me te steunen. Dank je wel dat ik in
Sinaai steeds een plek zal hebben om thuis te komen. Natuurlijk dank ik ook
Wannes en Kaat, om mij te leren dat ik nooit alleen ben. Dank je, aan de
hele uitgebreide familie voor zoveel adressen waar ik steeds een warme plek kan
vinden.

With much pleasure I want to thank my youngest friend. In all honesty, Ward
should be a co-author of this work. We have spent many hours writing together.
Most of the time, I was wielding the keyboard. However, he also undoubtedly
contributed. If you find some stray letters throughout this text, chances are
these were written by a very curious and extremely enthusiastic one-and-a-half
year old.

I am fortunate to be able to say: throughout the last years many friends became
colleagues, and many colleagues became friends.

There are new friends, who first were colleagues. In particular, I thank Annick,
Asmus, Bart, Dieter, Heidi, Jonathan, Louise, Nico, Niko, Oliver, Pieter, Rien,
Robbert, Roy, Tibo, and Tom for giving me the joy of going to work, day
in and day out. Coming into the office has always been a pleasure by being
greeted by the “Good morning!”’s of Camilla, Felix, Jorg, Niels, Pieter, and
Wout. There are even a few colleagues, who I now dare to call dear friends. I
wholeheartedly thank Alexis for taking the time (during a very busy period)
to thoroughly read my whole thesis and providing invaluable comments like
‘Pew pew!’ every time the ‘shooting’ technique was mentioned. I also thank
Steven for being a companion in discovering new mathematics, solving many
problems, and exploring the deep caverns of the C++ specification. And of

6This is not an exaggeration. I am extremely grateful that he never told me “no”, he
never instructed me to manage my time differently.
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course, I thank Charlotte. It still astonishes me how opposite we are, and yet
so similar. Thank you for fighting all our battles with me, always side-by-side,
never head-to-head.

And there are old friends. People who have grown with me for already a decade
and more. In particular, I thank my fellow students Wouter, Frederik, Sam,
and David. And I thank Bart and Jorn for their long-lasting friendships, our
dates are as valuable as they are scarce. All of you have helped me become
the mathematician I am today, however some in particular contributed a great
deal to the person I am today. I thank Hadewijch for all the pancakes, all
the (late-night) talks, and all the adventurous double-dates which still await
us. I thank Simon, for motivating me with chocolate waffles, for letting me
sometimes win with Beatsaber, and for the many level-headed much-needed
conversations. And, I thank Jens for all his creativity, for first saying yes and
then doubting if it may have been too ambitious, and for his courage to do
what he loves.

Last but definitely not least I want to thank my jury. Liviu, Guido, Veerle,
Kris and Dajana, thank you for taking the time to read my work with such
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needed in this work, for his hospitality in inviting us to Sinaia, and for his
many comments and suggestions.

Closing the opening words
To end this section there is still one person left to thank, and that is you: the
reader. Writing this book has been quite the adventure, and I hope reading it
will give you a sincere view on the whole affair.

If you have any questions, remarks or comments (about this work, or even
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Summary

Summary in English
An n-dimensional time-independent Schrödinger equation is a linear second
order partial differential equation given by

−∇2ψ(x) + V (x)ψ(x) = Ex. (1)

In this expression, V is a given potential function defined on a domain Ω ⊆ Rn.
When solving this equation, the goal is to find all functions ψ : Ω → R and
values E ∈ R that satisfy the Schrödinger equation (1) in combination with
appropriate boundary conditions. For such a solution, E is called the eigenvalue
with corresponding eigenfunction ψ(x).

For the one-dimensional case, Schrödinger equations are a special case of
Sturm–Liouville equations:

−(p(x), y′(x))′ + q(x)y(x) = λw(x)y(x). (2)

In this equation p(x), q(x) and w(x) are given real functions on a possibly
unbounded interval. Here, λ is the unknown eigenvalue with corresponding
eigenfunction y(x).

In chapter 2, the well-established constant perturbation method for approxi-
mating eigenvalues and eigenfunctions of (2) is studied. Here, regular Sturm–
Liouville problems on [a, b] are considered with homogeneous Robin boundary
conditions:

αay(a) + βap(a)y′(a) = 0 and αby(b) + βbp(b)y′(b) = 0.

This constant perturbation method is able to reach extremely accurate results,
for small as well as for high eigenvalues. With this method, we build a new
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C++-implementation which we call Matslise 3.0 accompanied by a python-
package named Pyslise. The new implementation is up to 100 times faster than
Matslise 2.0 when calculating eigenvalues. For the evaluation of eigenfunctions,
our program is even up to a 1000 times faster. These speed-ups are possible
due to the development and calculation of novel, more complicated propagation
formulae.

We also consider Sturm–Liouville problems with (generalized) periodic boundary
conditions. This is the first time, to the best of our knowledge, that a constant
perturbation method is used for this type of problem. The main challenge here
is to make sure all requested eigenvalues are found.

In chapters 3 and 4, two methods for the approximation of eigenvalues and
eigenfunctions of the time-independent two-dimensional Schrödinger equa-
tion (1) are studied. The first method (discussed in chapter 3) is an existing
method developed by Ixaru based on constant perturbation concepts. It is
limited to Schrödinger problems on rectangular domains with homogeneous
Dirichlet boundary conditions. Throughout that chapter, we introduce some
improvements to this method. Most notably, we develop a technique to reliably
determine the index of an eigenvalue. This enables us to ensure all requested
eigenvalues have been found.

A second method for approximating eigenvalues and eigenfunctions of time-
independent two-dimensional Schrödinger equations with homogeneous Dirichlet
boundary conditions on (possibly non-rectangular) domains can be found in
chapter 4. Here, we are inspired by a simple method based on a finite difference
scheme. This leads us to develop Strands, a C++-program accompanied by a
homonymous python-package. Through the use of line-based collocation ideas
with well-chosen basis functions (inspired by chapter 3), this new method is
able to reach much more accurate results, with a similar computational cost.

Nederlandse samenvatting
Een n-dimensionale tijdsonafhankelijke Schrödinger-vergelijking is een lineaire
tweede orde partiële differentiaalvergelijking:

−∇2ψ(x) + V (x)ψ(x) = Ex. (1)

In deze uitdrukking is V een gegeven potentiaalfunctie die gedefinieerd is op
een domein Ω ⊆ Rn. Bij het oplossen van deze vergelijking zoekt men alle
waarden E ∈ R waarvoor functies ψ : Ω → R bestaan die voldoen aan (1)
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samen met gegeven randvoorwaarden. In zo een oplossing noemt men E de
eigenwaarde met bijhorende eigenfunctie ψ(x).

Een eendimensionale tijdsonafhankelijke Schrödinger-vergelijking is een speciaal
geval van een Sturm–Liouville-vergelijking:

−(p(x), y′(x))′ + q(x)y(x) = λw(x)y(x). (2)

Hierbij zijn p(x), q(x) en w(x) gegeven functies op een mogelijk onbegrensd
interval. De onbekenden zijn de eigenwaarde λ met bijhorende eigenfunctie
y(x).

In hoofdstuk 2 bestuderen we de constante perturbatie methode voor het benade-
ren van de eigenwaarden en eigenfuncties van vergelijking (2). Meer specifiek be-
handelen we reguliere Sturm–Liouville-problemen met Robin-randvoorwaarden:

αay(a) + βap(a)y′(a) = 0 and αby(b) + βbp(b)y′(b) = 0.

Deze constante perturbatie methode bereikt extreem nauwkeurige resultaten
voor zowel kleine als grote eigenwaarden. We gebruiken deze methode om
een nieuw C++-programma, dat we Matslise 3.0 noemen, te ontwikkelen. Dit
programma wordt vergezeld van de python-bibliotheek Pyslise. Deze nieuwe
implementatie is tot wel 100 keer sneller dan Matslise 2.0 voor de bereke-
ning van eigenwaarden. Wanneer eigenfuncties geëvalueerd worden, is ons
programma zelfs tot 1000 keer sneller. Onder meer dankzij de ontwikkeling
van nieuwe, meer ingewikkelde formules waren we in staat deze versnellingen
te realiseren.

We behandelen ook Sturm–Liouville-problemen met (veralgemeende) periodieke
randvoorwaarden. Zover wij weten is dit de eerste keer dat de constante
perturbatie methode wordt ingezet voor dit soort problemen. Hierbij bleek het
de grootste uitdaging om te kunnen garanderen dat alle gevraagde eigenwaarden
gevonden worden.

In hoofdstukken 3 en 4 worden twee methoden bestudeerd die de eigenwaarden
en eigenfuncties van een tweedimensionale tijdsonafhankelijke Schrödinger-
vergelijkingen kunnen benaderen. De eerste methode (onderzocht in hoofd-
stuk 3) is ontwikkeld door Ixaru met ideeën gebaseerd op de constante per-
turbatie methoden. Deze methode is beperkt tot Schrödinger-vergelijking op
rechthoekige domeinen met homogene Dirichlet-randvoorwaarden. Doorheen
hoofdstuk 3 introduceren we enkele uitbreidingen en verbeteringen op die me-
thode. We ontwikkelen onder andere een techniek waarmee we het volgnummer
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van een eigenwaarde betrouwbaar kunnen bepalen. Met deze techniek kunnen
we garanderen dat alle gevraagde eigenwaarden gevonden zijn.

Een tweede methode om de eigenwaarden en eigenfuncties van tweedimensionale
tijdsonafhankelijke Schrödinger-vergelijking op (mogelijks niet-rechthoekige)
domeinen met homogene Dirichlet-randvoorwaarden te benaderen, wordt ont-
wikkeld in hoofdstuk 4. Hierbij laten we ons inspireren door een eenvoudige
techniek gebaseerd op de eindige-differentiemethode en de lessen die we leerden
in hoofdstuk 3. Dit stelde ons in staat om Strands te ontwikkelen. Dit is een
C++-programma, begeleid door een gelijknamige python-bibliotheek. Dankzij
collocatie ideeën toegepast op roosterlijnen met goed gekozen basis functies
(zoals bij de methode van Ixaru), bereikt ons nieuw programma een veel hogere
nauwkeurigheid met een gelijkaardige uitvoeringstijd.



Developed software

All developed software consists of C++-source files together with a python-
package. This python-package provides a user-friendly interface to the effi-
ciently implemented C++-code. To build upon this code, python is an optional
dependency. All Schrödinger problems can also be expressed using only C++.

Matslise 3.0 — pyslise
Solving one-dimensional Sturm–Liouville and Schrödinger problems with ho-
mogenous Robin or periodic boundary conditions. See chapter 2.

https://github.com/twist-numerical/matslise
https://pypi.org/project/pyslise/

Matslise 2D — pyslise2d
Approximating eigenvalues and eigenfunctions of two-dimensional Schrödinger
problems on rectangular domains with homogenous Dirichlet boundary condi-
tions, using the method from chapter 3.

https://github.com/twist-numerical/matslise2d
https://pypi.org/project/pyslise2d/

Strands — strands
Approximating eigenvalues and eigenfunctions of two-dimensional Schrödinger
problems on general bounded domains with homogenous Dirichlet boundary
conditions, using the method from chapter 4.

https://github.com/twist-numerical/strands
https://pypi.org/project/Strands/
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Chapter 1

Introduction to differential
equations

Differential equations recall in most mathematicians many feelings. Some only
shiver by the mere idea of them, some of my colleagues in the more algebraic,
(finite) geometric or discrete fields come to mind. Others, myself included,
rejoice at the thought of studying them.

The knowledge about and experience with differential equations vary wildly
among even the best of mathematicians. Some only had one, maybe two,
introductory courses, others have studied them their whole careers. Important
note: there are very few mathematicians that can say they have studied
‘differential equations’. Neither can I: I have studied a differential equation;
maybe two, if you count generously.

Before diving into the required mathematical background, let us take a step
back. Mathematics does not live in a vacuum. Modern ideas have grown out
of a very rich history, with many influences from the scientific questions of the
time. In this introduction we will take the time to appreciate this history, and
discover how differential equations have been developed.

17



18 Chapter 1. Introduction to differential equations

1.1 History
In this section, we will walk through an abridged version of the history of
differential equations. Before talking about functions, it is important to talk
about what makes up these functions.

A good starting point is to take a look at numbers. Counting things is
universal and timeless, as such the natural numbers N are a jumping point
to all the other numbers. In modern mathematics, the next logical step is to
introduce the integers Z. Historically however, only throughout the Middle
Ages became negative numbers and the concept of zero widely accepted as
numbers themselves. The first texts about negative numbers are from Chinese
mathematicians somewhere between the second and seventh century AD. Later
on, Indian and Islamic mathematicians calculated with negative numbers as
well.

In historic texts, we find already references to (positive) fractions, as early as
Ancient Egypt, around 1000 BC (maybe even earlier). So after N the next
numbers that were ‘discovered’, were the positive rational numbers Q+. Soon
thereafter, some irrational numbers were found. The most prominent example
is probably

√
2, the length of the diagonal of the unit square. But it is a bit

too generous to say that this was the discovery of the real numbers. It is more
accurate to say that there was a (geometric) notion of algebraic numbers Q.
These are the numbers that are solutions of polynomial equations, like x2 = 2.
However, only around the year 900, the Egyptian mathematician Abū Kāmil
Shujā ibn Aslam started to accept these solutions as numbers in and of itself.

The mathematical invention that may have had the most impact in our daily
lives may also be unnoticed by many: the Hindu–Arabic numeral system. This
is a way of writing down numbers, invented between the first and fourth century.
Most numeral systems were not made for large numbers or were cumbersome
to work with. Only the best of mathematicians could do computation in those
systems; especially multiplication was difficult. The Hindu–Arabic numeral
system solved this by being positional based. This means that the last digits is
the one’s place, the digit before that ten’s, then hundred’s, and so on. This
allows for a compact way to write down large numbers that still allows easy
computation through arithmetic manipulations. Our modern numeral system
is a direct descendant of the Hindu–Arabic numeral system. Compare for
example the Roman numeral MMMDCCCXLVI to our modern equivalent 3846.
And to help illustrate this point, try squaring both numbers.

From the sixteenth century onwards, mathematics in Europe started to flourish.
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For our purposes, the next stride towards the real numbers was made by Simon
Stevin from Bruges. He created a way to write real numbers as a decimal
expansion. It was Stevin who introduced the concept of ‘digits after the decimal
point’. In this same century the complex numbers were discovered in the context
of cubic and quartic polynomials. The computation rules for these numbers
were written down by Rafael Bombelli. Later in 1637, it was René Descartes
who coined the terms ‘real’ and ‘imaginary’ numbers. [55]

Yet, it still took more than 200 years before we would get a first formal
mathematical definition of the real numbers R. It was the work of the great
logicians of the late 19th century, spearheaded by Georg Cantor. He provided in
1874 a formal logical construction of the real numbers. It may seem surprising
that a rigorous definition of the real numbers came so late in the rich history
of mathematics. But, in practice, the development of calculus, and the theory
of functions, did not really require strict formal definitions to advance.

1.1.1 Calculus
From a natural sciences view, it is natural to study relations between quantities,
for example position in function of time, or air resistance in function of velocity.
Yet, the earliest uses of calculus seem to have their origins in geometry: finding
the area under a parabola, or the volume of a cone for example.

Throughout Ancient times and the Middle Ages, across mathematical texts of
many cultures, diverse examples of what we now call derivatives and integrals
can be found. But all these examples were concrete applications to problems.
Only in the seventeenth century were the first unifying theories of derivatives
and integrals of functions developed. It was by none other than Newton and
Leibniz. The history between these two fathers of calculus is much richer than
one would expect, it reads almost as a screenplay. In short, it is now accepted
that both mathematicians independently developed the theory of calculus; at
the time it was not.

The notations ∫
f(x) dx and df(x)

dx
for the integral and the derivative of a function f were introduced by Leibniz.
Newton introduced the notation

ḟ

for the derivative of f . In mathematical texts this notation is less common, but
it can be abundantly found in physics. In this work we will mostly use df

dx for
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the derivative of f . If the context makes the variable to which the derivative is
taken clear, then we will abbreviate df

dx to f ′.

For many examples of how the theory of calculus and especially differential
equations have developed throughout the last 400 years, we refer the interested
reader to [5]. One of these examples explains what Newton probably understood
by integrals and quadratures, and how these were computed. Another example
is concerned with how the works of d’Alembert evolved.

The first differential equations, as we know them now, were studied shortly
after Newton’s work. Leibniz himself and the Bernoulli brothers came across
differential equations in the context of geometry and mechanics. In the eigh-
teenth century the multivariate theory of Leibniz was extended and the first
partial differential equations were written down. In the nineteenth century from
the theoretical side, more results about the existence of solutions of differential
equation were found. From the practical side, many more applications were
found. Not only in mechanics, but also in heat transfer, optics, fluid flow
and electricity and magnetism were differential equations instrumental. The
equations of Navier and Stokes or the laws of Maxwell, to name a few, were
developed. We refer to [92] for a more detailed view on the great minds of
mathematics who build our modern understanding of calculus.

The developments from the nineteenth century continued into the twentieth.
Great new theoretical strides were made, and many new applications were found.
Most notably, for this thesis at least, in quantum mechanics, Schrödinger’s
equation [90] was developed.

1.1.2 Advent of computing
Most1 differential equations cannot be explicitly solved. For ordinary linear
differential equations with constant coefficients, for example, analytical solutions
are available. But if one of the coefficients is not a constant, these formulae fail.
For this reason, numerical methods for differential equations were developed.
These methods do not solve the equation in the strictest sense, but they are
able to approximate solutions arbitrarily accurate. The first numerical method
is Euler’s method2 from 1768. Albeit simple, in the nineteenth century Cauchy
proved it to converge. This convergence assures that, if sufficiently small steps
are taken, arbitrarily accurate approximations can be obtained.

1Mathematically, we can even say ‘almost all’.
2Both the forward Euler method as the backward version.
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Later, in the middle of the nineteenth century multistep methods were developed.
And at the end of that century, Runge published the first Runge–Kutta method.
These ‘new’ methods were of higher order than the simpler methods and
therefore could take larger steps to reach sufficiently accurate results.

What strikes me the most is that all these methods were developed long before
computers were invented. This implies that the first applications of these
methods required an unfathomable amount of manual computation. Now, we
are spoiled, and computers do all the numerical heavy lifting for us.3 Back
then, the term ‘computer’ did exist, but it was a profession, not a device.

Throughout the twentieth century, with the rise of computing devices, the use
and applicability of these numerical methods for ordinary differential equations
exploded. We were able to reach never-before-seen accuracies in fractions of
the time it would have costed only a few decades earlier. This explosion in
computational power still continues. Now, the speed of affordable consumer
desktop computers can be measured in teraFLOPS4. For example, my university
computer (Intel i7-8700K and an NVIDIA Quadro P2000) has a combined
rated speed of a little over 3 teraFLOPS. Almost all of this speed comes from
its graphics processing unit, with the CPU only contributing 0.06 teraFLOPS.
This already indicates that FLOPS is an imperfect unit. Writing a program
that is able to use all these FLOPS is prohibitively difficult.

1.2 Ordinary differential equations
In the most general formulation, an n-dimensional kth order ordinary differential
equation

f
(
x,y, dy

dx ,
d2y
dx2 , . . . ,

dky
dxk

)
= 0 (1.1)

expresses n constraints on an unknown sufficiently differentiable function
y : Ω → Rn with Ω ⊆ R and f : Ω × (Rn)k+1 → Rn. In most cases, this
equation alone is insufficient to determine a unique solution y(x). For this,
some initial or boundary conditions can be imposed on y (or any of the
derivatives). As this abstract description is not intuitive, we provide some
examples.

3Regularly I feel very fortunate to be a PhD-student now, and not then. I assume that,
before computers, many tedious computations must have been assigned to students.

4‘FLOPS’ is a measure of how many floating point operations per second a computer can
execute. A computer with a speed of 1 teraFLOPS can execute one trillion (1012) floating
point operations each second.
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Integrals
The problem of determining primitive functions F (x) can be rewritten as a
one-dimensional first order ordinary differential equation:

F (x) =
∫
f(x) dx ⇐⇒ dF

dx = f(x).

A definite integral can similarly be formulated as a differential equation, however
a boundary condition has to be imposed:

∫ b

a

f(x)dx = F (b) with dF
dx = f(x) and F (a) = 0.

Mathematically, this is a valid example. Intuitively however, this seems rather
trivial.

Swinging pendulum
Due to Newton’s laws of motion, physical systems often give rise to second
order ordinary differential equations. One such example is a pendulum. Here,
a mass is suspended such that it can swing freely back and forth. Let θ(t) be
the angle by which the mass is displaced from its hanging resting position at
time t. The movement of the pendulum is described by

d2θ

dt2 + g

l
sin(θ) = 0,

with g the gravitational constant, and l the distance between the fixed point
and the mass. As initial conditions at time t0, θ(t0) represents the displacement
angle at t0 and θ′(t0) represents some initial angular velocity with which the
mass is released.

Brachistochrone curve
Mathematicians love challenging each other. This is true today, as much as
it was 300 years ago. In 1696, Johann Bernoulli posed the Brachistochrone
problem: on which curve slides a frictionless bead the fastest from point A to
B? There are many strategies for solving this problem. In one such solution,
the following differential equation arises:

dy
dx =

√
D − y

x
with y(0) = 0,

with D a parameter.



1.2. Ordinary differential equations 23

Lotka–Volterra equations
In biological modelling, dynamical systems can describe many real-world sit-
uations. The Lotka–Volterra equations make up one such system. This set
of equations models the population size of two species. One function r(t)
expresses the population size of prey (for example rabbits), the other function
f(t) tracks the population size of the predatory species (for example foxes).
The Lotka–Volterra equations are

{
dx
dt = αx− βxy
dy
dt = δxy − γy

.

In this two-dimensional first order ordinary differential system, the constants α,
β, γ and δ are parameters which describe the particular characteristics of the
situation. Typically, as initial conditions, a researcher supplies the population
sizes of both species at the start of the simulation.

1.2.1 Sturm–Liouville problems
These were only a few short examples from a myriad of real-world applications.
In chapter 2 we will focus upon the numerical solution of a particular class of
second-order linear ordinary differential equations: Sturm–Liouville equations.

A Sturm–Liouville equation is defined by three functions p(x), q(x) and w(x)
on a domain Ω ⊆ R:

− d
dx

(
p(x) dy

dx

)
+ q(x)y = λw(x)y.

This problem is only well-defined if appropriate boundary conditions are pro-
vided as well. For more details about different types of boundary conditions
we refer the reader to the introduction in chapter 2.

One striking particularity of these problems is that, besides y(x), the constant
λ is an unknown as well. Solutions for λ are called eigenvalues and the
corresponding solution for y(x) is what is called an eigenfunction.

Differential equations can be approached from many angles. Some researchers
take a pure theoretical approach, where many powerful results are proven.
Other researchers start with real-world applications and consider differential
equations as simply a tool in the toolbox to tackle their problems. The approach
we have chosen falls somewhere in between. From the beginning we set out to
develop and implement numerical methods for particular differential equations.
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To build a useful and accurate method, many theoretical results are needed.
However, also practical feasibility and computational efficiency are essential.5

1.3 Partial differential equations
One of the main characterizing properties of ordinary differential equations
is that there is only a single independent variable. In equation (1.1), x is
this independent variable. A partial differential equation is a generalization
which allows multiple independent variables. As these equations are commonly
used in physical problems, the independent variables are most commonly the
temporal coordinate t and the spatial coordinates x, y, z, . . . , or more general
x1, x2, . . . , xn.

Providing a clean general one-formula definition of partial differential equations
is quite cumbersome, and not at all instructive. Therefore, let us immediately
take a look at some examples.

The heat equation
Conductive heat transfer (among many other diffusive phenomena) is described
by the heat equation. Let f(t, x) be the temperature along an insulated metal
rod with x ∈ [0, 1] and t ∈ [0,∞[. Physical laws dictate that this function
satisfies

∂f

∂t
= α

∂2f

∂x2 .

In this expression, α is a parameter. As is the case for ordinary differential
equations, to uniquely define a partial differential problem, boundary and or
initial conditions have to be imposed. If for example the rod is heated at one
side to 500 K, and cooled at the other to 250 K, then this can be expressed as
f(t, 0) = 500 and f(t, 1) = 250 for all ]0,∞[. However, this is still insufficient
to properly define the problem. Initial conditions have to be provided for t = 0.
These should express the temperature throughout the rod at the beginning of
the simulation. For example, if the experiment is started with the rod at room
temperature 300 K, then this is captured as f(0, x) = 300 for all x ∈ [0, 1].

This problem can be easily generalized to higher dimensional situations. Assume
a similar experiment is conducted with a metal unit sphere. Let g : [0,∞[ × Ω :

5Personally, I feel this is the true strength of this thesis. Neither the theoretical advance-
ments we made, nor the efficiency of our implementation are perfect. However, I believe the
powerful combination of the two to be the real innovation.



1.3. Partial differential equations 25

(t, x, y, z) → g(t, x, y, z) be the temperature throughout this sphere Ω :={
(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1

}
. Physics dictates that this g satisfies:

∂g

∂t
= α

(
∂2g

∂x2 + ∂2g

∂y2 + ∂2g

∂z2

)
= α∇2g.

Again, appropriate boundary and initial conditions have to be specified.

Gauss’s law for magnetism
Classical electromagnetism states that no magnetic monopoles exist. Mathe-
matically this can be expressed as: at all times, the magnetic field B : R3 → R3

is divergence-free. Writing this as a partial differential equation makes this
clear:

∇ · B = 0 ⇐⇒ ∂B
∂x

+ ∂B
∂y

+ ∂B
∂z

= 0. (1.2)

This is a first-order three-dimensional linear partial differential equation. It
illustrates that many laws and theories in physics can be formulated as (partial)
differential equations.

In engineering, computer models of real-world situations are invaluable in
making decisions. All of these models have to be based on (our understanding
of) the world around us and the physical laws governing it. Partial differential
equations are therefore essential in many of these models. If one wants to sim-
ulate magnetism, then equation (1.2) may be sufficient. However, if electricity
is also involved, then the more general (and much more complicated) equations
of Maxwell have to be solved.

Incompressible Navier–Stokes equations
To simulate the flow of incompressible fluids6, the incompressible Navier–Stokes
equations can be used. Let u : R × R3 → R3 express the flow vector at each
moment t in each point (x, y, z). For incompressible flow, u has to satisfy

∂u
∂t

= ∇2u − (u · ∇)u + f

while ∇ · u = 0.

6The flow of water is a straightforward example. Also, these equations can handle slow
flowing wind, as pressure can be assumed constant. If pressure cannot be neglected, then the
compressible equations should be used.
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As one may already suspect, for most7 partial differential equations, numerical
methods need to be developed. In state-of-the-art modelling software, many
tools are available. As in many of these programs complicated geometries
are supported (such as the blades of a wind turbine, or the CAD-model
of a bridge for example), numerical simulation methods based upon finite
element techniques are preferred. These methods create a triangular mesh
(or tetrahedral mesh for three-dimensional problems) of the domain, and use
approximations on each of the cells of this mesh. In general, these techniques
can be employed for an extremely diverse set of problems, albeit with an
exceptionally high computational cost.

1.3.1 Time-independent Schrödinger problems
In this thesis, and in particular chapters 2 and 3, we will be solving two-
dimensional time-independent Schrödinger equations [90]. These are defined
by a potential V (x, y) on a domain Ω ⊆ R2. The goal is to find all functions
ψ : Ω → R and values E ∈ R such that8

−∇2ψ + V (x, y)ψ = Eψ,

with appropriate boundary conditions.

As many partial differential equations, the Schrödinger equation has its origins
in physics. More specifically, the time-dependent Schrödinger equation describes
wave functions in quantum mechanics. As I am a mathematician, I am not at
all qualified to give any introduction to such an immensely complicated physics
subject. Fortunately, in this thesis we are not concerned with the ‘why’9 of
this equation; we are only trying to solve it.

7Again, mathematically, we can say ‘almost all’.
8In principle, ψ and E could be complex valued. In theorem 2.1, we will pose that all

solutions are real.
9This is an easy-to-make statement as a mathematician. However, it is a dangerous

statement for a scientist (which we most definitely are). Being blind to the applications is
immoral. Quantum mechanics, and more generally our understanding of physics, has two
sides. On the one hand, it obviously improves uncountable many lives immeasurably, directly
and maybe even more so indirectly. On the other hand, not all human inventions have been
for the better. The most incomprehensibly destructive weapons, for example, have only been
possible due to advances in nuclear physics. As we are developing algorithms and methods for
solving Schrödinger equations, implicitly (and by acknowledging this, now explicitly as well)
we put our trust in the researchers who will be using our tools. So, to any user benefitting
from our work, let this footnote be my plea to use it morally and responsibly.
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1.4 Notation
Throughout this thesis we try to follow common notations present in the
literature. However, different authors prefer different notations. For example
from a physics perspective, ⟨f |g⟩ is extremely common. In mathematical
analysis this notation is rare. There, ⟨f, g⟩ or f · g are more frequently used.
For clarity, in this section we give an overview of the notational conventions
used in this work.

N,Z,Q,R,C
N+,Q+,R+ The set of the natural numbers, the integers, the

rational numbers, the real numbers and the complex
numbers respectively. A superscript plus indicates
the subset of only strictly positive numbers.

a, b, c, . . .
α, β, γ, . . .

Lowercase variables are assumed to be scalars.

u,v, . . . Lowercase bold variables are assumed to be vectors.

B,M,Λ, . . . Uppercase bold variables are assumed to be matrices.

∥x∥p The Lp(Rn)-norm: (
∑n
i=1 |xi|p)

1
p .

∥x∥ = ∥x∥2 By default, norms are assumed to be Euclidean.

∇f =
(
∂f
∂x1

, ∂f∂x2
, . . .

)⊺
The gradient of a function is computed with respect
to the space variables (not time).

∆f = ∇2f = ∇ · ∇f The Laplacian of a function is calculated as ∂2f
∂x2

1
+

∂2f
∂x2

2
+ . . . .

∂Ω For a domain Ω ∈ Rn, the boundary ∂Ω is defined
as Ω ∩ Ωc (this is the intersection of the closure of Ω
with the closure of the complement of Ω.).

⟨f | g⟩ For functions f, g : Ω → C defined on Ω ⊆ Rn, their
inner product is calculated as

∫
Ω f(x)g(x) dx.
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Chapter 2

One-dimensional
time-independent
Schrödinger equations

2.1 Introduction
The one-dimensional time-independent Schrödinger equation is a linear ordinary
differential equation posed as an eigenvalue problem on a domain Ω ⊆ R with
specified boundary conditions. A solution is given as an eigenvalue λ ∈ R
with corresponding eigenfunction y : Ω → R. Each solution has to satisfy the
following equation

−y′′(x) + V (x)y(x) = λy(x),

for each of the values x ∈ Ω. In this equation, the given function V : R → R is
the potential of the problem at hand. Note that if y(x) is an eigenfunction, c y(x)
will also be an eigenfunction with the same eigenvalue, for each value of c ∈ R0.
As such, it is not really possible to say “the eigenfunction corresponding to a
given eigenvalue”. Later on we will prove that in many cases the eigenfunction
is, up to a constant factor, uniquely defined.

Boundary conditions have to be specified before solutions can be found. These
conditions pose restrictions on y(a), y′(a), y(b) and y′(b). Boundary conditions
come in many flavors. We provide an overview of the most common ones:

29
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• Dirichlet boundary conditions specify which value the solution takes on
the boundary of the domain. In our case, eigenfunctions can always
be scaled, as such, it is not useful to specify the value of the solution
different from zero on the boundary. This type of boundary conditions
thus simplifies to y(a) = 0 and y(b) = 0, and is therefore called the
homogeneous Dirichlet boundary conditions.

• Neumann boundary conditions specify which value the derivative of a
solution takes on the boundary of the domain. In our case, the same
remark as given for the Dirichlet boundary conditions applies. This means
that homogeneous Neumann boundary conditions imply that y′(a) = 0
and y′(b) = 0.

• Robin boundary conditions are a generalization of both previous boundary
conditions. When we impose these conditions on a solution y(x), we
imply that a certain weighted average of the function and its derivative
are a fixed value. In our case, homogeneous Robin boundary conditions
can be imposed. This can be written as

αay(a) + βay
′(a) = 0 and αby(b) + βby

′(b) = 0.

These three types of boundary conditions are what is called separated conditions.
The condition on the left side a is decoupled from the one on the right side b.
In contrast, there are also boundary conditions that do couple both ends.

• Periodic boundary conditions are used to specify that a solution should be
periodic. In other words, the solution has to end in the same value as it
started, and so should the derivative. Mathematically this can be written
as: y(a) = y(b) and y′(a) = y′(b). These condition can be extended to
antiperiodic boundary conditions: y(a) = −y(b) and y′(a) = −y′(b). Or
even generalized with a 2 × 2 matrix K:

(
y(a)
y′(a)

)
= K

(
y(b)
y′(b)

)
.

Note that homogeneous Dirichlet or Neumann boundary conditions can always
be written as homogeneous Robin boundary conditions. So when studying
the one-dimensional time-independent Schrödinger equation, it is more general
to consider homogeneous Robin boundary conditions. Periodic (or general-
ized periodic) boundary conditions are less common and problems with these
boundary conditions lose some of the nice properties which are guaranteed for
separated conditions. This case will be studied later in section 2.4.
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2.1.1 Properties of the Sturm–Liouville equation
Before developing numerical methods for solving the one-dimensional time-
independent Schrödinger equation, it is important to build a strong theoretical
foundation. The goal is to build a thorough understanding of the Schrödinger
equation and to use this intuition to develop efficient and accurate numerical
algorithms to solve this equation.

In the scientific literature, it is quite rare to find studies about the one-
dimensional Schrödinger equation itself. Most, if not all, relevant articles
and books cover the more general topic of Sturm–Liouville theory. As Sturm–
Liouville equations are a generalization of Schrödinger equations they are more
widely applicable, and as such more impactful to study. In this section, we will
follow the tradition from the literature and study the Sturm–Liouville equation.
Many more details and examples of Sturm–Liouville theory can be found in
relevant textbooks, for example [88, chapter 5].

The Sturm–Liouville equation is also a linear ordinary differential equation
posed as a boundary value eigenproblem, given by the following equation on
the domain Ω ⊆ R:

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x). (2.1)

The functions p(x), q(x) and w(x) are given on the domain Ω. These functions
define the Sturm–Liouville problem. If the domain is a bounded interval
Ω = [a, b], and if p(x), q(x) and w(x) are continuous, p(x) is differentiable and
p(x) > 0 and w(x) > 0 over the whole domain [a, b], then the problem is called
a regular Sturm–Liouville problem.

A solution of a Sturm–Liouville problem consists of an eigenvalue λ with
corresponding eigenfunction y(x), which satisfy (2.1) on [a, b]. For now, we
will study the Sturm–Liouville equation with homogeneous Robin boundary
conditions:

αay(a) + βap(a)y′(a) = 0 and αby(b) + βbp(b)y′(b) = 0. (2.2)

Note that the Schrödinger equation with homogeneous Robin boundary con-
ditions is a special case of the Sturm–Liouville equation, specifically when
p(x) = 1, q(x) = V (x) and w(x) = 1.
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Many theorems can be formulated about self-adjoint linear operators1. For
now, we provide a few specific theorems about Sturm–Liouville equations. The
proofs for some of these theorems are quite extensive and require a thorough
understanding of functional analysis. In this work, we will not provide these
proofs.

For implementing methods to find solutions, it is valuable to study what a
solution would look like. Since the solutions of a Sturm–Liouville problem
are eigenvalues with corresponding eigenfunctions, solutions will consist of a
(possibly) complex number λ ∈ C with a corresponding function y : [a, b] → C.
The fact that these could be complex values impacts our study significantly.
So, let us first state that solutions can always be real.

Theorem 2.1. Let p(x), q(x) and w(x) define a regular Sturm–Liouville problem
on [a, b].

All eigenvalues of the Sturm–Liouville problem with real homogeneous Robin
boundary condition (2.2) are real. Corresponding eigenfunctions can always be
scaled such that they are real.

Knowing that we only need to find real solutions simplifies our work. The next
theorem allows us to get a grasp on the number of eigenvalues we need to find.

Theorem 2.2. The number of eigenvalues of a regular Sturm–Liouville problem
with homogeneous Robin boundary conditions are countable. All eigenvalues
have a lower bound, no upper bound and are unique. This implies that these
can be written as:

λ0 < λ1 < λ2 < · · · → ∞.

We say that the kth eigenvalue λk has index k.

This last theorem is essential. It enables us to formulate questions such as:
“Find all eigenvalues less than 500.” or “Find the first 10 eigenvalues.” Besides
an eigenvalue, a solution also consists of an eigenfunction.

Theorem 2.3. With each eigenvalue λk, an up to scaling unique eigenfunc-
tion yk : [a, b] → R is associated. Eigenfunctions corresponding to different

1A self-adjoint linear operator is a concept from functional analysis. A regular Sturm–
Liouville problem is equivalent with finding the spectrum of a specific linear self-adjoint
operator. The powerful mathematical machinery of functional analysis can thus be valuable
for us as well.
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−π 0 π
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y0
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y2

−π 0 π

y3

Figure 2.1: The first four eigenfunctions of the Sturm–Liouville problem with
p(x) = 1, q =

√
|x|, w(x) = 1 + x2 and homogeneous Dirichlet boundary

conditions on [−π, π]. The roots of each of these functions are indicated.

eigenvalues are orthogonal with respect to the weight function w(x):
∫ b

a

ym(x)yn(x)w(x) dx = 0 if m ̸= n.

Even stronger: Sturm–Liouville theory provides a way to characterize the index
of an eigenvalue by means of the eigenfunction only.

Theorem 2.4. The eigenfunction yk(x) corresponding to the kth eigenvalue λk
has exactly k zeros in the interior of the domain [a, b].

This theorem is illustrated in figure 2.1. Here we see the first few eigenfunctions
of a Sturm–Liouville problem. Later on we will use the term “highly oscillatory
eigenfunction”, theorem 2.4 explains why this is justified. If k becomes large,
the eigenfunction will have many zeros and therefore will oscillate heavily. This
can also already be seen on the last panel of figure 2.1.

With these four theorems in the back of our mind, we will be able to develop
numerical methods for solving Sturm–Liouville and Schrödinger problems. As
stated in the beginning of this section, we have given a very brief overview
of the theorems that are relevant for us. If the reader is interested in more
details, or in a rigorous theoretical framework many textbooks are available,
for example [88, 35, 103, 34].

Throughout this thesis, and the research preceding it, we have not and will not
focus on the applicability of the Sturm–Liouville equation. This is definitely
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not due to a lack of applications. It is rather the opposite: Sturm–Liouville
equations appear in an innumerable diversity of fields. Many real-world prob-
lems can be stated as or reduced to differential equations and in particular to
the Sturm–Liouville equation.

2.1.2 Liouville’s transformation
In [72], Liouville introduced a transformation from a Sturm–Liouville problem
to a Schrödinger problem. Here we provide just the transformation, with
some remarks on how to implement it. For a derivation the original work by
Liouville [72] can be consulted, or a more clear text in the context of Matslise
can be found in [67]. In this last work, the implementation also gets some
attention.

In this subsection, we change the notation a little from (2.1). Let us consider
the Sturm–Liouville equation

−(p(r)z′(r))′ + q(r)z(r) = λw(r)z(r), (2.3)

on the domain [rmin, rmax].

With the transformation

x =
∫ r

rmin

√
w(r′)
p(r′) dr′,

z = σy

and V (x) = q

w
+ σ

d2

dx2
1
σ

with σ(r) = 1
4
√
p(r)w(r)

,

equation (2.3) becomes

−y′′(x) + V (x)y(x) = λy(x)

on the domain [0, xmax], with xmax = x(rmax). In this transformation, we
assumed p(x) and w(x) to be strictly positive and twice differentiable on the
domain.

The boundary conditions

αminz(rmin) + βminp(rmin)z′(rmin) = 0
αmaxz(rmax) + βmaxp(rmax)z′(rmax) = 0
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are transformed into

Aminy(0) + βminy
′(0) = 0

Amaxy(xmax) + βmaxy
′(xmax) = 0,

with Amin = αminσ
2(rmin) + βminσ

′(rmin)σ(rmax)
and Amax = αmaxσ

2(rmax) + βmaxσ
′(rmax)σ(rmax).

Implementing these formulae is not trivial. In [67], it is proposed to use an
adaptive quadrature rule to approximate x(r) up to the full precision available
in the double datatype. The inverse function r(x) can then be calculated by
applying a Newton-Raphson scheme. Again, this computation is executed to
get the full precision available in the used floating-point type.

Evaluating these functions up to the maximal precision available may seem
overkill. However, we have found2 this to be essential. The constant per-
turbation method used to solve the resulting Schrödinger equation builds a
piecewise high-order polynomial approximation of the potential function. If
these functions are evaluated with relatively low accuracy, the piecewise polyno-
mial approximation algorithm has a hard time to reach the required accuracy
and far too many subintervals will be used.

2.2 Background about Matslise
Numerical methods for ordinary differential equations as initial value problems
are already many centuries old, starting with Euler’s method. Numerical
methods as a research topic by itself really took off a little more than a century
ago. In particular, linear multistep methods and Runge–Kutta methods were
described around 1900. First they were applied and calculated by hand, later
on “calculating machines” [74] were used. Nowadays, modern computers do all
the tedious computations.

For ordinary differential equations as boundary value problems, such as the
Sturm–Liouville equations, the story is different. There still are only a few
general methods for such problems. For linear ordinary differential equations,
one of the more popular choices is a method based upon finite differences.

2This is an example of things we learned the hard way. See the first paragraph of
section 2.6.1.
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x0 x1 xi xn−1 xn

a b

. . . . . .

Figure 2.2: An equidistant division of the domain [a, b] in n subintervals.

To illustrate the idea behind methods based upon finite differences, consider
the linear second order differential equation

y′′(x) = α+ βy(x) + γy′(x)

on the interval [a, b] with boundary conditions y(a) = ya and y(b) = yb.
First, we discretize the integration domain [a, b] into an equally spaced grid of
points a = x0, x1, . . . , xi, . . . , xn−1, xn = b, with ∆x the distance between
two consecutive points. This discretization can be seen in figure 2.2. The
differential equation is now approximated by using finite difference expressions
of the involved derivatives. For example, the second order approximations:

y′′(xi) ≈ y(xi−1) − 2y(xi) + y(xi+1)
∆x2

and y′(xi) ≈ y(xi+1) − y(xi−1)
2∆x .

This simplification yields a linear system in the variables y(x1), . . . , y(xn−1).
In general, for linear ordinary differential equations with linear boundary
conditions, this technique leads to a linear matrix-vector reformulation of the
differential equation, which can be solved with classical linear algebra tools.

In this general technique, constructing higher order methods is rather straight-
forward. One only has to use a more accurate finite difference approximation.
However, these methods become increasingly computationally expensive as more
accuracy is required. In our case, accurately determining higher eigenvalues
requires significantly more computation time.

2.2.1 Finite difference scheme for the Sturm–Liouville equation
Until around 1990, the best methods [4, 99] for approximating solutions to the
Sturm-Liouville problem looked at the simpler form of the Schrödinger equation
and employed a finite difference scheme. After solving the approximating linear
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algebra problem, some corrections can be applied to improve the accuracy of
higher eigenvalues. The authors of [4, 99] experimented with several finite
difference approximations. First classical formulae were tried, later on highly
tuned exponential-fitted formulae were developed to better handle the oscillatory
nature of the eigenfunctions.

To illustrate this class of finite difference methods for Sturm–Liouville equations
we will develop a simple version ourselves. This will allow us to appreciate
the nuances of these methods more, and it will give us some ideas about the
general advantages but also disadvantages of this technique. For completeness,
we recall the Sturm–Liouville equation from (2.1):

−(p(x)y′)′ + q(x)y = λw(x)y.

In this example, we will approximate the solution to this equation on the interval
[a, b] and impose homogeneous Dirichlet boundary conditions y(a) = y(b) = 0.
As stated earlier, solutions will consist of eigenvalues λ and corresponding
eigenfunctions y(x).

As a first step we discretize the domain [a, b] with n+1 equidistant points, as in
figure 2.2. The eigenfunctions y(x) we are looking for, can now be approximated
by values in each of the grid points y(xi) ≈ yi. For translating this problem
into a linear matrix-vector equation, we are missing one key component. We
need a way to discretize the expression (p(x)y′)′. For this, we apply the central
second order finite difference formula for the first derivative twice, with half
the step size. In more detail, the first derivative of a scalar function f(x) can
be approximated as:

f ′(x) ≈ f(x+ h) − f(x− h)
2h .

Applying this expression once to (p(x)y′)′ in the point xi with step size h = ∆x
2

gives:
(p(x)y′)′(xi) ≈ 1

∆x

(
(py′)

(
xi+ 1

2

)
− (py′)

(
xi− 1

2

)
)
)

.

Applying the finite difference formula a second time with step size ∆x
2 to

approximate y′(x) yields:

(p(x)y′)′(xi) ≈ 1
∆x2

(
pi+ 1

2
yi+1 −

(
pi− 1

2
+ pi+ 1

2

)
yi + pi− 1

2
yi−1

)
.

To ease notation, we have substituted y(xi) with its approximation yi, and have
denoted xi+xi+1

2 as xi+ 1
2
, and p(xi) as pi. Also, note that if p(x) = 1 this formula
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simplifies to the classical, well-known, central second order approximation of
the second derivative.

If we apply this finite difference approximation to (2.1) in each point xi, then
we get the linear generalized eigenvalue problem:

− 1
∆x2

(
pi+ 1

2
yi+1 −

(
pi− 1

2
+ pi+ 1

2

)
yi + pi− 1

2
yi−1

)
+ q(xi)yi = λw(xi)yi.

To emphasize that this is a linear algebra problem we can rewrite this in matrix
notation:

(−T + diag(q)) y = λ diag(w)y. (2.4)

The (n − 1)-dimensional vector y =
(
y1 y2 . . . yn−1

)⊺ is the unknown
approximation of the eigenfunction. The (n − 1)-dimensional vectors q =(
q(x1) q(x2) . . . q(xn−1)

)⊺ and w =
(
w(x1) w(x2) . . . w(xn−1)

)⊺ are
the values of the coefficient functions q and w. And lastly, the matrix T is the
tridiagonal matrix given by:

T = 1
∆x2




−p 1
2

− p 3
2

p 3
2

p 3
2

−p 3
2

− p 5
2

p 5
2

p 5
2

−p 5
2

− p 7
2

p 7
2

. . .
pn− 3

2
−pn− 3

2
− pn− 1

2




.

To find the eigenvalues of (2.4) one can notice that if w(xi) is never 0 for
0 < i < n then diag(w) is invertible and the problem becomes a simple
tridiagonal eigenvalue problem. This can then be solved with any of our
favorite tridiagonal eigenvalue solvers. If w happens to be constant, this
becomes a symmetric tridiagonal matrix, for which LAPACK [2], for example,
contains the specialized routines ?stev and relatives.

As a numerical experiment of this method we will take a look at the following
Sturm–Liouville equation:

−
(
(1 + x)2y

)′ + (x2 − 2)y = λexy (2.5)

on the domain [0, 1] with homogeneous Dirichlet boundary conditions. Fig-
ure 2.3 shows the relative errors of the lowest four eigenvalues in function of
the chosen number of grid points n + 1. As n increases, the error decreases,
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Figure 2.3: Relative error of approximated eigenvalues of problem (2.5) in
function of the number of grid points n+ 1 on the domain.
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Figure 2.4: Relative error of approximated eigenvalues of problem (2.5) in
function of the eigenvalue index k.
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as desired. Notice that as the constructed method is based upon second order
finite difference formulae, we expect to see the decrease of error be of second
order too. This is indicated in the figure with the dotted line. The constructed
method is of relatively low order, so to compute very accurate approximations,
a dense grid is needed. In the literature, one can find many methods based
upon finite difference approximations, many of which use (much) higher order
formulae. These better methods can reach high accuracy with relatively little
computational work for the first few eigenvalues.

As earlier hinted, methods based upon finite differences struggle with the
computation of higher eigenvalues. Figure 2.4 illustrates this. Here, the relative
error of the first 50 eigenvalues is plotted, for different values of n. Note that
in the case of n = 32, only 32 eigenvalues can be computed. On this figure, the
line corresponding to O(k2) is drawn. Together with the O(∆x2) from earlier,
one expects the relative error of the kth eigenvalue to be

O(∆x2k2)

for this method applied to problem (2.5). This shows us that the larger the
eigenvalue, the more difficult it is to compute accurately. This lesson not only
holds for this method in particular, but it is also applicable to most methods
of this type. In the literature [4, 98, 99], one can find some techniques to
mitigate this effect by applying some corrections. In [4] such a correction is
analyzed when applied to Numerov’s method [75]. Here, the authors are able
to bring the error down from O(k6h4) to O(k3h4). This is remarkably better.
But even with this correction technique, computing large eigenvalues is still
computationally difficult.

2.2.2 CP-methods
The drawbacks of the methods based upon finite differences are already known
for a long time. One of the first3 works that tries to not only mitigate these
troubles but rather fully fix them, was “A new method for the solution of the
Schrödinger equation” [19] in 1970. There, Canosa and De Oliveira present a
new method to approximate solutions of the one-dimensional time-independent
Schrödinger equation. Similar ideas can also be found in internal reports [42,
43] by Ixaru in 1969. These ideas lay the foundations to what would later be

3In [61], a brief historical overview is given of the application of CP-methods to Sturm–
Liouville problems. In this thesis, we will take the time to take a closer look at the earlier
methods. They will provide us with a more intuitive understanding of the algorithms, in
preparation of our own advancements within employing these ideas.



2.2. Background about Matslise 41

a xi−1 xi xi+1 b

V (x)
V̄ (x)

Figure 2.5: A potential function V (x) is approximated as the piecewise constant
function V̄ (x) along the domain [a, b].

called constant perturbation methods (CPM or CP-methods). To intuitively
appreciate these CP-methods it is valuable to study the method from [19].

For this, we will only consider the Schrödinger equation

−y′′ + V (x)y = λy (2.6)

on the domain [a, b] with homogeneous Robin boundary conditions αay(a) +
βay(a) = 0 and αby(b) + βby(b) = 0. However, do note that using Liouville’s
transformation Sturm-Liouville problems can be transformed into Schrödinger
problems.

2.2.2.1 Piecewise constant approximation of the potential

As a very first step, [19] simplifies the potential V (x) as a piecewise constant
approximation V̄ (x). This approximation is visualized in figure 2.5. Notice that
no restrictions are placed upon the size of the subintervals, and a non-uniform
grid is definitely allowed. Upon choosing V̄ (x), one should keep in mind that
the better the piecewise approximation is, the better the resulting eigenvalues
will be. Also, the computational runtime depends linearly on the number of
subintervals used.

The next step is to fix the value for λ for now. Then, for each subinterval
[xi, xi+1] the potential is approximated Vi ≈ V (x) for x ∈ [xi, xi+1]. With this
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approximation, the analytical solution is computed of the problem

y′′ = (Vi − λ)y.

These analytical solutions yi(x) have the following structure:

yi(x) =





Ai +Bix if Vi = λ,
Ai cos

(
x

√
λ− Vi

)
+Bi sin

(
x

√
λ− Vi

)
if Vi < λ,

Ai cosh
(
x

√
Vi − λ

)
+Bi sinh

(
x

√
Vi − λ

)
if Vi > λ.

To determine the appropriate values for Ai and Bi, continuity conditions at
the grid points are applied:

yi−1(xi) = yi(xi) and y′
i−1(xi) = y′

i(xi).

If n subintervals are used, this system of equations has 2n variables and 2(n−1)
equations. Together with the two equations from the boundary conditions, this
yields a fully determined linear system. Now, we have translated the problem
of finding eigenvalues of the Schrödinger equation (2.6) to finding values for λ
such that this system of equations has non-zero solutions. Only these solutions
correspond to a non-zero eigenfunction.

Finding values for λ for which the constructed system becomes singular is not
as trivial as one may assume. In [19], the authors have provided their own root
finding algorithm based upon finding changes in the sign of the determinant.
But this algorithm is not without issue. Eigenvalues can be arbitrarily close
together, which makes it hard to ensure that one has found all requested values.
Choosing the appropriate step sizes when the distance between eigenvalues
increases, is a balance between efficiency and not missing any. Later on, we will
describe a way to reliably and efficiently determine all required eigenvalues.

One of the main benefits of this “new method for the solution of the Schrödinger
equation” [19] is that its accuracy does not depend on the size of the requested
eigenvalue. Because only analytical solutions of the piecewise approximated
problem are considered, oscillations can be represented exactly. Even the most
extreme oscillations are cleanly captured inside the sin en cos of yi. The idea
of using analytical solutions allowed to develop the CP-methods.

When studying this method one can make the observation when looking at
figure 2.5 that V̄ (x) is a crude approximation of the function V (x). The
importance of this remark becomes even more apparent when one realizes
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that the accuracy of the method solely depends upon the accuracy of this
approximation.

Nonetheless, the idea of Canosa and De Oliveira gained traction. In 1971
Ixaru [44] has written a note about the error analysis of this new method. In
the same year Pruess [78] has studied this method thoroughly and provided
numerical examples of linear piecewise approximations and quadratic piecewise
approximations of the potential function. Due to this analysis, this is now
known as Pruess’s method.

Here we will state the most important theorems from [78], without proof. All
details can be found in the original work.

Theorem 2.5 (Pruess 1973). Let λk be the kth eigenvalue of the Schrödinger
equation

−y′′ + V (x)y = λy

on the domain [a, b] with homogeneous Robin boundary conditions. And let λ̃k
be the kth eigenvalue of the approximate Schrödinger equation with potential
V̄ (x) on the same domain, with identical boundary conditions. Here V̄ (x) is a
piecewise mth degree polynomial approximation, let h be the width of the largest
subinterval in this approximation. For h sufficiently small, we have as h → 0,

|λk − λ̃k| = O(h2m+2) for each k.

This theorem provides justification for the idea of Canosa and De Oliveira.
Even though a constant approximation (m = 0) may be crude, it still is a
second order method. Furthermore, the theorem suggests that expanding
this method up to higher degree piecewise polynomial approximations may be
worthwhile.

In [78], the author also studied what happens to the error on the eigenvalues if
k is increased. In [19], it was assumed that this error does not get worse as k
increases.

Theorem 2.6 (Pruess 1973). Following the notation from theorem 2.5, assume
V̄ (x) to be a least squares mth degree piecewise polynomial approximation of
V (x), i.e. on each subinterval [xi, xi+1], V̄ is the mth degree polynomial such
that the following is minimal

∫ xi+1

xi

(
V (x) − V̄ (x)

)2 dx.
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Figure 2.6: Relative error of the found eigenvalues of problem (2.7) by using
the method of constant piecewise approximation of the potential on a uniform
mesh with step size h. The most accurate calculation used 512 subintervals,
the least accurate 64.

Under this assumption, if k → ∞, it holds for the relative error that

λk − λ̃k
λk

= O(k−4).

This last theorem does not only say that the error does not become larger if k
increases, it also tells us that the relative error decreases rapidly when k → ∞.
Theorem 2.6 highlights the main advantage of this technique in comparison to
other state-of-the-art methods. Where many other methods become less and
less accurate for large eigenvalues, this method becomes even more accurate.
This makes it a so-called asymptotic method [59, 104].

As a numerical experiment we have applied the method with constant piecewise
approximations (m = 0) to the problem

−y′′ + 100 cos2(x) y = λy (2.7)

on the domain [0, π] with homogeneous Dirichlet boundary conditions. In
figure 2.6 the relative error of the application of the method is illustrated. We
see that the error follows indeed the predicted line of O(h2). In figure 2.7 we
see the dramatic increase in accuracy when k becomes larger. The predicted
order of O(k−4) seems to be reached once k is sufficiently large.
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Figure 2.7: Relative error of the found eigenvalues of problem (2.7) by using
the method of constant piecewise approximation of the potential on a uniform
grid with step size h. The graphs are in function of the index of the eigenvalue.
The yellow line used 128 subintervals, the blue line 512.

But still some nuances have to be made. In [78], some numerical examples
are given for constant (m = 0), linear (m = 1) and quadratic (m = 2)
approximations. But only for the constant approximations analytical solutions
are used. For the higher order experiments, the true solution on a single
subinterval is approximated by an at least fifteenth order Taylor series expansion.
These Taylor series are only polynomial approximations of a possibly highly
oscillatory function. This gives problems for higher lying eigenvalues.

2.2.2.2 Constant perturbation methods

In the years since the first article from Canosa and De Oliveira [19], the research
into these kinds of methods has flourished. One of the first extensions considered
not only piecewise constant approximations but also linear and quadratic
approximations, as in [78]. For constant approximations, the exact solution
is given by hyperbolic or trigonometric functions. For linear approximations,
the Airy functions Ai(x) and Bi(x) are appropriate. As these are well-known
special functions, software packages are available to evaluate them. But not
unexpectedly, these packages are harder to find, and more difficult to use,
than sine, cosine, and hyperbolic variants. For quadratic and higher order
approximations, no closed form formula exists for the exact solutions.
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To improve accuracy and computational efficiency, it is valuable to construct
higher order methods, when developing numerical methods. As we are limited
to an order of O(h2) for constant approximations, or O(h4) when using linear
approximations, some alternative improvements were required. In the book [51],
Ixaru dedicated chapter 3 to the development of the constant perturbation
methods. The main idea is to not directly improve the approximation of V (x),
but to start with a piecewise constant approximation V̄ (x), adding correction
terms to capture the difference between the reference solution for V̄ (x) and
the true solution for V (x).

Before we analyze the constant perturbation methods, let us take the time to
formalize which mathematical problem we are solving. For now, we will only
look at the differential equation

y′′(δ) = (∆V (δ) + V̄ − λ)y(δ) (2.8)

as initial value problem starting from 0 with δ ∈ [0, h]. Denote the homogeneous
Neumann solution as u(δ), as such, u(0) = 1 and u′(0) = 0. And, we will
write the homogeneous Dirichlet solution as v(δ), thus v(0) = 0 and v′(0) = 1.
In (2.8), V̄ is a constant (not piecewise) approximation of V (x) on the current
subinterval [xi, xi+1] and ∆V (δ) := V (xi + δ) − V̄ . Being able to solve the
initial value problem is sufficient to also solve the boundary value eigenproblem.
For solving the latter we can employ a shooting procedure to the former, see
section 2.2.3 for more details. The procedure we will develop here can then be
applied to each of the subintervals in the constant piecewise approximation of
V (x).

Following [51, 45], let us denote a solution of (2.8) generally as p(δ), this thus
represents either u(δ) or v(δ). Now we write the solution p(δ) as a perturbation
series:

p(δ) = p0(δ) + p1(δ) + p2(δ) + · · ·

In this expression, the first order term p0 is the solution of the reference
equation

p′′
0(δ) = (V̄ − λ)p0(δ) (2.9)

with appropriate initial values. That is, u0(0) = 1 and u′
0(0) = 0 for p = u,

if p = v the initial values are v0(0) = 0 and v′
0(0) = 1. The perturbation

corrections can now be recursively defined as the solution of

p′′
q (δ) = (V̄ − λ)pq(δ) + ∆V (δ)pq−1 (2.10)
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with initial conditions pq(0) = p′
q(0) = 0. Notice that this definition implies

that p indeed solves (2.8) with the appropriate initial values:

p = p0 +
∞∑

q=1
pq

p′′ = (V̄ − λ)p0 +
∞∑

q=1

(
(V̄ − λ)pq + ∆V (δ)pq−1

)

= (V̄ − λ)
∞∑

q=0
pq + ∆V (δ)

∞∑

q=0
pq

= (∆V (δ) + V̄ − λ)p.

To symbolically compute the expression of pq Ixaru has introduced some
auxiliary functions4, based upon the analytical solution of equation (2.9).

Definition 2.7 (Ixaru 1984). The family of η-functions ηm : R → R for m ∈
{−1, 0, 1, . . . } is defined recursively as:

η−1(Z) = cosh
(√

Z
)

η0(Z) =
sinh

(√
Z
)

√
Z

ηm(Z) = ηm−2(Z) − (2m− 1)ηm−1(Z)
Z

.

When Z < 0 the definitions of η−1 and η0 should be read as calculations in C.
But, notice that the resulting values will always be real. Furthermore, if Z = 0,
one should take the limit of ηm to zero, this yields5 ηm(0) = 1

(2m+1)!! .

Much has already been written about these instrumental functions, for example
in Ixaru’s book [51]. To get a feeling about these functions, we provide
figure 2.8. In definition 2.7, we have chosen to simplify the notation by
allowing computations in C. But when implementing these formulae, it is
much more efficient to keep all calculations in R. For Z < 0, we implement
η−1(Z) = cos

(√
−Z
)

and η0(Z) = sin
(√

−Z
)
/
√

−Z.
4What we will call η−1, Ixaru has named ξ. The notation of the recursive definition

becomes a little easier when the ηm and ξ names are unified.
5In this expression n!! is the double factorial: n!! := n · (n − 2) · (n − 4) · ..., with only

strictly positive integers as factors. For our purposes we define 0!! = (−1)!! = 1.
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Figure 2.8: A graph of the first three η-functions.

Another interesting property of these η-functions is their series expansions:

η−1(Z) =
∞∑

q=0

Zq

(2q)!

ηm(Z) = 2m
∞∑

q=0

(q +m)!Zq
q!(2q + 2m+ 1)! if m ≥ 0.

When |Z| is small, the recursion from the definition becomes numerically
unstable. It is more accurate to use this series expansion on ηm and ηm+1, for
m sufficiently large, and work our way back to m = 0 and m = −1 with the
inverted recursion

ηm−1(Z) = Zηm+1(Z) + (2m+ 1)ηm(Z).

Other interesting properties of these special functions are already studied. Here
we provide some results, without proofs.

Theorem 2.8 (Ixaru 1984). For the family of functions defined in definition 2.7,
the following properties hold for m ∈ {−1, 0, 1, 2, . . . } and Z ∈ R.
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• Asymptotic behavior for |Z| → ∞:

ηm(Z) ≈





η−1(Z)
Z(m+1)/2 if m is odd,

η0(Z)
Zm/2

if m is even.

• Differentiation with respect to Z:

η′
m(Z) = 1

2ηm+1(Z).

• Differentiation with respect to δ if Z = Fδ2:

∂η−1(Z)
∂δ

= Z

δ
η0(Z)

∂δ2m+1ηm(Z)
∂δ

= δ2mηm−1(Z) if m ≥ 0.

Later on, we will use these η-functions as part of terms in infinite sums.
Convergence of these sums is aided by the fact that ηm(Z) → 0 for m → +∞
for any fixed Z.

Surprisingly, during the writing of this thesis my copromotor mentioned he
recognized the series expansion of the η-functions to be those of a specific
generalized hypergeometric function. In the literature we have not found this
relation to hypergeometric functions. As such, we believe the following theorem
to be new.

Theorem 2.9. For all m ∈ {−1, 0, 1, . . . } is ηm(Z) a special case of generalized
hypergeometric function6:

ηm(Z) = 2m+1(m+ 1)! 0F1

( −
m+ 3

2
; Z4

)
(2.11)

Consequently if m ≥ 0, this can also be expressed with modified Bessel functions7

of the first kind Iα:

ηm(Z) =
√

2π (2m+ 1)!Z− m
2 − 1

4 Im+ 1
2

(√
Z
)

.
6Chapter 16 of [27] is dedicated to these functions, with many known properties.
7The relation to Bessel functions has already been documented in [52].
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Proof. Following chapter 16 of [27], the hypergeometric function 0F1 is defined
as8:

0F1

( −
m+ 3

2
; Z4

)
=

∞∑

k=0

Zk

4k
(
m+ 3

2
)
k
k!

. (2.12)

Expanding Pochhammer’s symbol yields:
(
m+ 3

2

)

k

=
(
m+ 3

2

)(
m+ 5

2

)
· · ·
(
m+ 2k + 1

2

)

= 2−k (2m+ 3) (2m+ 5) · · · (2m+ 2k + 1)

= 21−2k (2m+ 2k + 1)!(m+ 1)!
(m+ k)! .

Inserting this into (2.12) allows us to write

0F1

( −
m+ 3

2
; Z4

)
= 1

2(m+ 1)!

∞∑

k=0

(m+ k)!Zk
k!(2m+ 2k + 1)!

= 1
2m+1(m+ 1)!ηm(Z).

For the second expression, equation 10.39.9 of [27] gives:

Iα(x) =
(x

2

)α 1
Γ(α+ 1) 0F1

( −
α+ 1; x

2

4

)
.

Substituting this into (2.11) with α = m+ 1
2 and x =

√
Z yields:

ηm(Z) = 22m+ 3
2 (m+ 1)!Z− m

2 − 1
4 Γ
(
m+ 3

2

)
Im+ 1

2

(√
Z
)

.

Using equation 5.5.5 in [27]:

√
πΓ(2z) = 22z−1Γ(z)Γ

(
z + 1

2

)

with z = m+ 1 > 0 we get the required expression.

Although this relation between the η-functions and other special functions has
never (as far as we can tell) been published before, it only has limited added

8Pochhammer’s symbol is used in this expression: (α)n := α(α+ 1)(α+ 2) · · · (α+n− 1).
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value. The developed theory of the last forty years is still equally valid and
valuable.

With the theory about the family of η-functions in hand, we are able to solve
equations (2.9) and (2.10) symbolically. The following theorem from [51]
captures these symbolic calculations for pq(δ). As these formulae have been
instrumental to our work (especially for section 2.3), we will provide a proof.

Theorem 2.10 (Ixaru 1984). Let p(δ) be a general solution of

p′′(δ) =
(
∆V (δ) + V̄ − λ

)
p(δ)

over the interval [0, h]. In this expression V = V̄ + ∆V (δ) is a given potential
function, with V̄ a constant approximation and ∆V (δ) the residual term. The
value λ is fixed. We denote the solution p(δ) with initial conditions p(0) = 1
and p′(0) = 0 as u(δ), and the solution with initial conditions p(0) = 0 and
p′(0) = 1 will be denoted with v(δ). These two functions u(δ) and v(δ) are
called the propagators. For ease of notation we will write Z(δ) =

(
V̄ − λ

)
δ2.

Let p(δ) = p0(δ) + p1(δ) + p2(δ) + . . . with:

p′′
0(δ) = (V̄ − λ)p0(δ)
p′′
q (δ) = (V̄ − λ)pq(δ) + ∆V (δ)pq−1(δ) for q > 0.

The function p0 inherits the initial conditions of p. If q > 0, pq has as initial
conditions pq(0) = p′

q(0) = 0.

If ∆V (δ) is a polynomial in δ then each term pq is given by:

pq(δ) =
∞∑

i=−1
δ2i+1C

(q)
i (δ)ηi(Z(δ)) (2.13)

with derivative:

p′
q(δ) =

C
(q)
−1(δ)
δ2 (η−1(Z(δ)) + Z(δ)η0(Z(δ))) (2.14)

+
∞∑

i=−1

(
C

(q)′
i (δ) + δC

(q)
i+1(δ)

)
δ2i+1ηi(Z(δ)).

The functions C(q)
i (δ) are polynomials and satisfy the following recursive rela-
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tion:

C
(q)
i (δ) = δ−i

2

∫ δ

0
εi−1

(
C

(q−1)
i−1 (ε)∆V (ε) − C

(q)′′
i−1 (ε)

)
dε

C
(0)
i (δ) =





δ if p = u and i = −1
1 if p = v and i = 0
0 otherwise

(2.15)

C
(q)
−1(δ) = 0 if q > 0.

Proof. As these formulae are recursively defined, a proof by induction is most
natural. For q = 0 the exact solutions can be calculated. If V̄ ≥ λ, then
u0(δ) = cosh

(√
Z(δ)

)
and v0(δ) = sinh

(√
Z(δ)

)
/
√
V̄ − λ. If V̄ < λ on the

other hand, then u0(δ) = cos
(√

−Z(δ)
)

and v0(δ) = sin
(√

−Z(δ)
)
/
√
λ− V̄ .

By using the η-functions both these cases can be summarized as:

u0 = η−1(Z(δ)) and v0 = δη0(Z(δ)).

Substituting the values of C(0)
i into (2.13) for q = 0, yields exactly the same

expressions. This proves the induction basis.

Assume, as induction hypothesis, that the theorem holds for any value for q
less than Q. First we prove that for each i, C(Q)

i is a polynomial. For this we
apply induction with respect to i. For i = −1, C(Q)

−1 = 0 is a polynomial. Since
∆V (δ) is assumed to be polynomial, we notice that for any other i

C
(Q−1)
i−1 (ε)∆V (ε) − C

(Q)′′
i−1 (ε)

is a polynomial, as a consequence of the induction hypothesis in Q, and the
induction hypothesis in i. This implies that the integrand in the definition of
C

(Q)
i (δ) is polynomial with no terms of degree less than i− 1. This means that

the integral in that definition will be divisible by δi, which proves that all C(Q)
i

are polynomials.

Let us then prove that pQ satisfies the initial conditions pQ(0) = p′
Q(0) = 0.

That pQ(0) = 0 can be seen in (2.13), using the facts that C(Q)
−1 = 0 for Q > 0

and that C(Q)
i are polynomials. Using the properties from theorem 2.8, we can

compute p′
Q(δ) to be as in (2.14). That this expression is zero for δ = 0 is less

apparent. First, notice that most terms are zero because C(Q)
i are polynomials
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and C
(Q)
−1 = 0 for Q > 0. The only term for which this is not clear is with

i = −1: C(Q)
0 (0)η0(Z(0)). For this term, we remark that the polynomial C(q)

−1 (δ)
never contains a constant term. For most values of q, it is zero, and for q = 0
it can only be zero or δ. This means, by the recursive construction, that also
C

(q)
i (δ) does not contain a constant term. This in turn means C(q)

i (0) = 0, and
thus p′

Q(0) = 0, for Q > 0. The last thing that we still have to prove, is that
this pQ indeed solves its defining equation.

Next we prove that pQ(δ) is a solution of

p′′
Q(δ) = (V̄ − λ)pQ(δ) + ∆V (δ)pQ−1(δ).

For this, we compute p′′
Q. For the sake of brevity, we will omit the argument δ

from most functions, and remember that all derivatives are with respect to δ.
But first, we know from the definition of Cqi that

C
(q)′
i = −iδ−1C

(q)
i + δ−1

2

(
C

(q−1)
i−1 ∆V − C

(q)′′
i−1

)
,

but also that
dδ2i+1ηi(Z)

dδ = δ2iηi−1

and d2δ2i+1ηi(Z)
dδ2 = δ2i−1 (2iηi−1(Z) + Zηi(Z)) .

These expressions, together with C
(Q)
−1 = 0, now can be used to simplify p′′

Q:

pQ =
+∞∑

i=0
C

(Q)
i δ2i+1ηi(Z)

p′′
Q =

+∞∑

i=0
C

(Q)
i δ2i−1 (2iηi−1(Z) + Zηi(Z))

+
+∞∑

i=−1
2C(Q)′

i+1 δ
2i+2ηi(Z) +

+∞∑

i=0
C

(Q)′′
i δ2i+1ηi(Z)

=
+∞∑

i=0
C

(Q)
i δ2i−1 (2iηi−1(Z) + Zηi(Z))

−
+∞∑

i=−1
2(i+ 1)C(Q)

i+1δ
2i+1ηi(Z) + pQ−1∆V
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= Z

δ2 pQ + pQ−1∆V .

Due to the definition of Z = δ2(V̄ − λ), this expresses exactly that pQ is a
solution to p′′

Q = (V̄ − λ)pQ + δV pQ−1.

At first glance, it may not be clear why theorem 2.10 is that important. Still,
these rather tedious computations and relatively complicated recursive relation
allows us to analytically construct formulae of any order. To calculate such a
formula, we choose the number of perturbation corrections Q and the number
of η-functions to use N and compute the values of C(q)

i with the recursive
relations (2.15) for q ≤ Q and i ≤ N . If ∆V is assumed to be a polynomial in
δ, then C(q)

i will be as well. The solution p(δ) will now have the following form
with finite sums:

p(δ) =
Q∑

q=0
pq(δ) with pq(δ) =

N∑

i=−1
C

(q)
i (δ)δ2i+1ηi(Z).

However, these formulae only can be calculated if V (x) is a polynomial. For this,
the very first step in the CP-algorithm is to approximate V (x) on each sector
by a polynomial V N (x) of sufficient high degree N . One possible polynomial
representation is by expressing it in terms of the orthogonal family of shifted
Legendre polynomials P̃n(x). This family of polynomials satisfies9

∫ 1

0
P̃m(x)P̃n(x)dx = δmn

2n+ 1 for m ̸= n,

and are increasing in degree, together with P̃n(x) = 1 for any n. As a reference
we provide the first four:

P̃0(x) = 1, P̃2(x) = 6x2 − 6x+ 1,
P̃1(x) = 2x− 1, P̃3(x) = 20x3 − 30x2 + 12x− 1.

Applying a least squares approximation of V (δ) with N + 1 shifted Legendre
polynomials yields

V (δ) ≈
N∑

n=0
Vnh

nP̃n

(
δ

h

)

9Here δmn is the Kronecker δ, defined as δmn = 1 if m = n else δmn = 0.
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where

Vn = 2n+ 1
hn+1

∫ h

0
V (δ)P̃n

(
δ

h

)
dδ, with n ∈ {0, 1, . . . , N}. (2.16)

To implement this, the numerical value of the integral can be computed with
Gauss quadrature rules of sufficiently high degree.

Let us denote the constant perturbation method with given choices for the
degree N and the number of correction terms Q as CPM[N,Q], then we get
the following result [49].

Theorem 2.11. If CPM[N,Q] is applied to propagate the solution on an equidis-
tant partition with mesh size h then

• for small values of E (i.e. if Z remains sufficiently small), the error in
the mesh points is bounded by CNh2N+2 (for some constant CN ) provided
that Q ≥

⌊ 2N
3
⌋

+ 1 if N ≥ 1 and Q = 0 if N = 0.

• if E is such that Z(h) ≪ 0 in all intervals, the error in the mesh points
is bounded by C∗

Nh
N/

√
E (for some constant C∗

N ) provided that Q ≥ 1 if
N ≥ 1 and Q = 0 if N = 0.

Finally, one can simplify the expressions for the coefficients of the perturbation
terms C(q)

i by taking into account the orders P0 (for small Z) and Pass (for
negative Z with |Z| ≫ 0) that can be attained by the CPM[N,Q] method.
Some terms will contribute to the solution in higher orders of h, and so they
do not need to be computed. This pruning then finally results in a method
which was generically denoted as CPM{P0, Pass}. Later in theorem 2.13, we
will prove that Pass = P0, thus we will denote our method as CPM{P0}.

The original SLCPM12-code implemented the CPM{12, 10} algorithm. In the
original Matslise package, a user could choose between several algorithms:
CPM{12, 10}, CPM{14, 12}, CPM{16, 14}, CPM{18, 16}. In Matslise 2.0
only CPM{18, 16} and CPM{16, 14} are implemented. The CPM{16, 14}
method is used for propagation and the difference between the two methods is
used for error estimation.

The CP methods have also been successfully applied to other types of prob-
lems, such as the so-called coupled channel Schrödinger-equations problem.
Research in the past lead to the Fortran code LILIX [46] and the matlab
code MatSCS [63]. These programs made it then possible to construct CP-based
methods for solving the two-dimensional Schrödinger problem [47] and the
time-dependent one-dimensional Schrödinger problem [62].
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a xm b

0 E(0)

E(1)

E(2)

Figure 2.9: Multiple shooting procedures are applied to a Sturm–Liouville
equation with homogeneous Dirichlet boundary conditions. E(0) is a possible
first eigenvalue guess, E(1) and E(2) are consecutive adjustments. Notice that
for E(2) a differentiable function in the matching point xm is found.

In chapters 3 and 4 we will develop methods for the two-dimensional time-
independent Schrödinger equation. These new methods are only possible,
thanks to the accurate and efficient CP-methods for the one-dimensional
problem.

2.2.3 Shooting with Prüfer’s transformation
We now return to the ideas of Canosa and De Oliveira [19]. The first thing
they did to find analytical solutions of the piecewise constant approximated
problem was fix the eigenvalue λ. In the developments following these ideas λ
was always assumed to be a constant. But in reality, this λ is unknown.

In [19] the eigenvalue differential equation was translated into the question:
for which values of λ does a given linear system of equations has non-zero
solutions? For the CP-methods no such translation is available. In [51] Ixaru
applies a shooting procedure to solve boundary value problems using constant
perturbation techniques.

The main idea of shooting is to ‘guess’ a value λ = E. With this guess, the
forward initial value problem is solved from the left side of the domain up
to a point xm, and also, a backward initial value problem is solved from the
right side to the same point xm. If the forward solution and the backward
solution emit a global continuously differentiable solution, then λ = E is a
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valid eigenvalue. If this is not the case, E is adjusted, and the procedure is
repeated. In figure 2.9 this is demonstrated schematically.

More concretely, to apply this technique to the Schrödinger equation (2.6) we
again assume E is fixed and convert it to a forward (left) initial value problem:

−y′′
L(x) + V (x)yL(x) = EyL(x),

with the starting condition

yL(a) = βa and y′
L(a) = −αa.

Analogously, we define a backward (right) initial value problem:

−y′′
R(x) + V (x)yR(x) = EyR(x),

with the starting condition

yR(b) = βb and y′
R(b) = −αb.

Now, the domain [xmin, xmax] is partitioned in K intervals. The ith interval can
be written as Ii = [xi−1, xi], with a = x0, x1, . . . , xK−1, xK = b the grid points.
One of these grid points can now be chosen as the matching point xm. Note
that numerically it is a little easier if this matching point is not in the exact
middle of the domain. If the potential happens to be zero, some eigenfunctions
will have roots in this midpoint. And, if the matching points coincide with a
root of an eigenfunction, care has to be taken to determine the scaling of the
left and right solutions.

Generically we can write such an interval as I = [X,X + h]. On I, the solution
y can now be expressed as:

(
y(X + δ)
y′(X + δ)

)
=
(
u(δ) v(δ)
u′(δ) v′(δ)

)(
y(X)
y′(X)

)
, 0 ≤ δ ≤ h . (2.17)

The functions u(δ) and v(δ) are the propagators from theorem 2.10 with the
initial conditions u(0) = 1, u′(0) = 0 and v(0) = 0, v′(0) = 1. This matrix is
called the one-step propagation matrix:

P(δ) =
(
u(δ) v(δ)
u′(δ) v′(δ)

)
. (2.18)

To execute backward propagation, its inverse can be determined. For δ = 0,
due to the initial conditions, the determinant of P(0) is one. To determine the
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determinant throughout the domain we compute its derivative with respect to
δ.

d det P
dδ = (u(δ)v′(δ) − u′(δ)v(δ))′

= u′′v + u′v′ − u′′v − u′v′

= (V (X + δ) − E)uv − u(V (X + δ) − E)v
= 0.

This implies that det P(δ) = 1, for each 0 ≤ δ ≤ h, which allows us to write
down P−1(δ):

P−1(δ) =
(
v′(δ) −v(δ)

−u′(δ) u(δ)

)
.

This matrix can now be used for the backward initial value problem.

If we compute the matrix P(h) on each interval left of xm and P−1(h) on each
interval to the right of xm, then the solution of yL(xm), y′

L(xm) and yR(xm),
y′

R(xm) can be determined.

To know if the guess for E was correct, we need to find a scaling of yL and yR
such that yL(xm) = yR(xm) and y′

L(xm) = y′
R(xm). This can be expressed via

a matching error function:

e(E) = yL(xm)y′
R(xm) − y′

L(xm)yR(xm). (2.19)

The goal now is to find all zero-values of this function. For this, we use the
Newton–Raphson method. Computing the derivative de(E)

dE is far from trivial.
But in theorem 2.10 we see the dependence on E of each u(h) and v(h) through
Z(δ) = ηi

(
(V (x) − E)δ2). In theorem 2.8, we provided the derivatives needed.

These can be used to also compute the derivative of e(E) with respect to E.
This allows for fast convergence of E to true eigenvalues λ, for which e(λ) = 0.

As an example, we consider one of Paine’s problems from [76]. On the domain
[0, π], we will solve the Schrödinger equation

−y′′(x) + exy(x) = λy(x), (2.20)

with homogeneous Dirichlet boundary conditions. In [76], the eigenvalues are
reported with five decimal digits; our new implementation Matslise 3.0 (see
section 2.3) agrees for all provided digits. The first twelve eigenvalues with 24
fractional digits are reported here.
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Figure 2.10: Using shooting, the relative error of estimates for different eigen-
values of (2.20) is plotted with respect to the number of iterations of the
Newton–Raphson procedure.

4.896669379967691490474902 56.181594022847580296684220
10.045189893253741994613494 71.152997537057822221278311
16.019267250492220805222091 88.132119191546181466153432
23.266270940022341911164117 107.116676138267797713195715
32.263707045804466735963540 128.105021273333317509823750
43.220019640534137263517478 151.096043745596921632322296

In figure 2.10, the convergence of the Newton–Raphson procedure is visualized.
We have started with the guesses 3, 18 and 102 to find the respective eigenvalues
λ0 ≈ 4.896669, λ2 ≈ 16.019267 and λ9 ≈ 107.116676. From the graphs, we see
that the convergence is definitely faster than linear. After at most merely six
iteration steps, we have reached the maximal precision of the double datatype
(10−16 ≈ 2−53) and with one more iteration we reach close to the maximal
precision of the float128 datatype (10−34 ≈ 2−112). In a table, it becomes
clear that the convergence has a quadratic behavior. Here the relative errors
are tabulated from the second iteration onward.

2 3 4 5 6 7
λ0 6 · 10−2 8 · 10−3 2 · 10−4 6 · 10−8 1 · 10−14 4 · 10−28

λ2 7 · 10−3 1 · 10−4 4 · 10−8 3 · 10−15 2 · 10−29

λ9 3 · 10−4 5 · 10−8 2 · 10−15 4 · 10−30

Note that this example has been performed in quadruple floating point precision.
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This is only possible because of our improvements from section 2.6.1.2.

There still remains one problem: how do we ensure that we have found all
eigenvalues?

For this we remember theorem 2.4. To know the index of the eigenvalue we
can ‘simply’ count the number of roots of the corresponding eigenfunction. In
practice this is quite hard, especially for highly oscillatory eigenfunctions. For
these, it is very easy to miss a few roots.

To combat this issue and to provide a reliable way to even count the roots
of highly oscillatory eigenfunctions, Prüfer’s scaled transformation can be
used [79].

Theorem 2.12 (Prüfer 1926). For a fixed value E define θ(x) and ρ(x) as the
continuous functions which satisfy

y(x) = ρ(x)√
S(x)

sin(θ(x)) and p(x)y′(x) =
√
S(x)ρ(x) cos(θ(x)) (2.21)

with tan θ(a) = −S(a)βa

αa
, θ(a) ∈ [0, π[ and S(x) a strictly positive scaling

function to ensure numerical stability. Here y(x) is a solution of the Sturm–
Liouville equation

−dp(x)y′(x)
dx + q(x)y(x) = Ew(x)y(x)

on the interval [a, b] with boundary conditions αay(a) + βap(a)y(a) = 0 and
αby(b) + βbp(b)y(b) = 0.

Define k to be

k = 1
π

(θ(b) − θb) ,

with tan θb = −S(b)βb

αb
and θb ∈ ]0, π]. If k is an integer, then y(x) has k roots

in the interior of the domain and satisfies the Sturm–Liouville problem. In
other words, λk = E is the kth eigenvalue.

Imposing that θ(x) and ρ(x) are continuous functions, ensures that (2.21)
uniquely defines these functions. θ(x) can be calculated as

θ(x) = atan S(x)y(x)
p(x)y′(x) + jπ, (2.22)
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Figure 2.11: Eigenfunction y1(x) and y3(x) for the Mathieu problem with
q = 10 from section 2.5.3. The scaled Prüfer angle θ(x) is plotted as well.

with j integer. If θ(x) has to be continuous we can uniquely determine which
value should be taken for j. To compute θ(x) efficiently and reliably, we
substitute (2.21) into the Sturm–Liouville equation. This yields:

θ′ = S

p
cos2(θ) + Ew − q

S
sin2 θ + S′

S
sin(θ) cos(θ). (2.23)

In the implementation while propagating solutions with equation (2.17), we
also solve (2.23). Luckily, this second ordinary differential equation does not
need to be solved accurately, because the very accurate value of y can be used to
compute θ(x) with equation (2.22) up to a multiple of π. The value computed
with (2.23) can then be rounded to the nearest value found with (2.22).

Much has been written about the best choices for the scaling function S(x). In
our implementation we follow Matslise as written in [67].

As an illustration of this scaled Prüfer transformation with equation (2.23) we
present figure 2.11. Here two eigenfunctions from the Mathieu problem from
section 2.5.3 with q = 10 are plotted. The scaled Prüfer angles can be seen
in blue. Notice that the Prüfer angle crosses a multiple of π if and only if the
corresponding x value is a zero of y(x). The final value of θ(b)/π − 1 on the
rightmost point of the domain tells us the index of the relevant eigenvalue.
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2.3 Matslise 3.0
In the previous section, we have studied the background of constant perturbation
methods. From here on we develop our additions to these well-established
methods. Some of these results were published in [9], particularly this section
and some numerical experiments from sections 2.5.3, 2.5.4 and 2.5.5. The other
numerical experiments from 2.5 take a closer look at our improvements to the
algorithm since [9]. In section 2.4, we present how the constant perturbation
method can be used to solve periodic boundary conditions as well. And, later
on in section 2.6 we take a deep dive into how our new efficient implementation
is built.

In 2005, the first version of Matslise [64, 66], a matlab package for solving
Sturm–Liouville problems (SLP), was published. This program was a mod-
ern take on the successful constant perturbation (CP) method based code
SLCPM12 [50]. It was the first implementation of CP methods in the user-
friendly, and then modern, numerical computing environment matlab. Up
to that point most, if not all, of these programs for solving Sturm–Liouville
problems (SLCPM12, SLEIGN, SLEDGE, . . . ) [50, 10, 28] were written in
Fortran.

Matslise provided a graphical user interface that made it easy for all researchers
to effectively solve the Sturm–Liouville equation without any knowledge of a
particular programming language. Before its release, if one wanted to solve a
particular SLP, sufficient knowledge of Fortran was needed to implement the
problem at hand.

In 2016 a new version, Matslise 2.0 [68], was released. In this whole new
version of Matslise, generalized CP methods for SLP were implemented. These
new methods enabled one to solve the SLP without explicitly transforming
the equation to the Liouville normal form. Avoiding this normalization also
made it possible to solve new types of Sturm–Liouville problems. As of this
writing, Matslise 2.0 has been downloaded over a thousand times, according
to SourceForge. This number proves the need of researchers to solve the
Sturm–Liouville problem.

As the original Matslise modernized the implementation of SLCPM12, the
need to remodernize this proven package has become apparent in our attempt to
use the Matslise routines to solve the multidimensional Schrödinger equation,
following the ideas of Ixaru in [47]. This approach requires the fast and accurate
computation of both the eigenvalues and the corresponding eigenfunctions of
several 1D Schrödinger-problems. The Matslise 2.0 version however mainly
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focuses on the fast and accurate computation of eigenvalues and the graphical
representation of the eigenfunction. In Matslise 2.0 the eigenfunctions can
be computed quite accurately and fast, but only in a limited set of points
(depending on the partition of the integration interval). The accurate com-
putation of the eigenfunction over the whole integration interval however is
time-consuming in the implementation of Matslise 2.0.

In fact, this illustrates that Matslise 2.0 has not been built as a library of
functions, but as a set of functions around a central GUI to solve SLP (and
Schrödinger problems in particular). Several other features illustrate this, such
as the algorithm that is used to detect whether a given problem is singular
and the automatic computation of the error estimates for the eigenvalues.
The algorithms are very useful for solving a particular SLP, but valuable
computation time is lost if this detection or the error estimation is not needed.

These challenges were the main motivator for a more efficient implementation
of Matslise. We have considered different ways to optimize Matslise, keeping
in mind its main features, in particular its user-friendliness, one of the main
reasons for the development of the first version of Matslise.

In this section, we give an overview of our theoretical advancements [9] in
building a very efficient implementation of the constant perturbation method.
Later on, in section 2.5, we will perform some numerical experiments and
some runtime analysis. In section 2.6, we will take the time to take a look
at the challenges we faced and the choices we made when building our new
implementation.

As a high-level overview, the constant perturbation method for solving one-
dimensional Schrödinger problems can be summarized in the following steps:

• Split the domain [a, b] in intervals (a = x0, x1, x2, . . . , xk, . . . , xn = b).

• For each interval k write X = xk−1 and h = xk − xk−1.

– Construct propagators u(δ) and v(δ) for δ ∈ [0, h], according to the
formulae from theorem 2.10.

– A solution y(x) can be calculated on the kth interval if y(X) is
known:

y(X + δ) = u(δ)y(X) + v(δ)y′(X)
y′(X + δ) = u′(δ)y(X) + v′(δ)y′(X).

• Employ multiple shooting to find solutions to the boundary value problem.
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Until now the perturbation terms for u(δ) and v(δ) given in theorem 2.10
were only calculated and implemented with δ = h. In that case, one not only
obtains superconvergence as formulated in theorem 2.11, but there is also a
major simplification in symbolic complexity. Nevertheless, for higher orders
even these ‘simplified’ formulae are daunting to work with.

For the efficient calculation of eigenfunctions in arbitrary points of the domain it
would however be beneficial if the propagation terms were also implemented in
function of δ. To prove the corresponding mathematical results, we reformulate
the expressions of the propagators in terms of θ = δ/h.

Functions of θ will be denoted with a bar, like C̄(θ) = C(θh) = C(δ) and
ūq(θ) = uq(θh) = uq(δ). Again p̄ generically denotes the functions ū or v̄. The
CP-correction terms are now given by:

p̄q(θ) =
∞∑

i=−1
h2i+1θ2i+1C̄

(q)
i (θ)ηi(Z(hθ)) (2.24)

with derivative:

p̄′
q(θ) =

∞∑

i=−1

(
C̄

(q)′
i (θ) + h2θC̄

(q)
i+1(θ)

)
h2i+1θ2i+1ηi(Z)

+
C̄

(q)
−1(θ)
θ2h

(η−1(Z) + Zη0(Z)) .

(2.25)

The functions C̄(q)
i satisfy the following recursive relation:

C̄
(q)
i (θ) = θ−i

2

∫ θ

0
σi−1

(
C̄

(q−1)
i−1 (σ)∆V (X + hσ) − h−2C̄

(q)′′
i−1 (σ)

)
dσ

C̄
(0)
i (θ) =





hθ if p = u and i = −1
1 if p = v and i = 0
0 otherwise

(2.26)

C̄
(q)
−1(θ) = 0 if q > 0 .

Denoting ȳ(θ) = y(X + θ h), the propagation relation (2.17) can be rewritten
as (

ȳ(θ)
ȳ′(θ)

)
=
(
ū(θ) v̄(θ)/h
ū′(θ) v̄′(θ)/h

)(
ȳ(0)
ȳ′(0)

)
, 0 ≤ θ ≤ 1. (2.27)
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Theorem 2.13 (Baeyens and Van Daele 2021). Assume, for h sufficiently small,
that an approximation of the propagation matrix

(
ū(θ) v̄(θ)/h
ū′(θ) v̄′(θ)/h

)

is desired to be accurate to at least O(hr). Then the number of correction terms
Q has to be at least ⌊ r3⌋ and V can be approximated by a polynomial of degree
N = r − 2.

Proof. This theorem is heavily inspired by [49]. There an error estimate is
calculated and theorem 2.10 and theorem 2.11 are proved. These proofs give a
useful framework for providing a result for the δ-dependent formulae.

First we show by induction on q and i that C̄(q)
i is a polynomial in both θ and

h where for each term the power in h is not smaller than the power in θ. This
indeed holds for all i when q = 0 and for all q when i = −1. Assuming that
this also holds for C̄(q−1)

i−1 and C̄
(q−1)
i , we will show that it also holds for C̄(q)

i .
Indeed, h−2C̄

(q)′′
i−1 (σ) is a polynomial satisfying the same property and

σi−1
(
C̄

(q−1)
i−1 (σ)∆V (X + hσ) − h−2C̄

(q)′′
i−1 (σ)

)

is a polynomial of degree at least i − 1 in σ. After integrating with respect
to σ between 0 and θ and multiplying by θ−i, it follows that C̄(q)

i (θ) is a new
polynomial in which no terms have gained factors in θ nor has any lost factors
of h. Thus, the result is a polynomial in θ and h with in each term at least as
many factors in h as in θ.

Further, one notices that if both C̄
(q−1)
i−1 and C̄

(q)
i−1 are zero, so is C̄(q)

i . With
the given conditions, it is easy to verify that

C̄
(q)
i (θ) =

{
0 for i < q − 1, if p̄ = ū,
0 for i < q, if p̄ = v̄.

In case C̄(q)
i (θ) is not zero, we investigate the common degree in h of all its

terms. Let us denote this common degree by dh(C̄(q)
i ). Since ∆V does not

contain a constant term, dh
(
C̄

(q)
q−1

)
= dh

(
C̄

(q−1)
q−2

)
+ 1. On the other hand

dh

(
C̄

(q)
i

)
= dh

(
C̄

(q)
i−1

)
− 2.
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For p̄ = ū, we have dh
(
C̄

(0)
−1

)
= 1 such that dh

(
C̄

(q)
q−1

)
= q+1 and dh

(
C̄

(q)
i

)
=

q + 1 − 2(i− (q − 1)) = 3q − 2i− 1 for i ≥ q − 1.

For p̄ = v̄, we similarly have dh

(
C̄

(0)
0

)
= 0 such that dh

(
C̄

(q)
q

)
= q and

dh

(
C̄

(q)
i

)
= q − 2(i− q) = 3q − 2i for i ≥ q.

Combining these results and assuming all ηi(Z(hθ)) are bounded we get:

ūq(θ) =
∑

i=q−1
h2i+1θ2i+1C̄

(q)
i (θ)ηi(Z(hθ)) = O(h3q)

v̄q(θ)/h = h−1
∑

i=q
h2i+1θ2i+1C̄

(q)
i (θ)ηi(Z(hθ)) = O(h3q).

Using the expression for the derivative p̄′
q(θ), one can similarly prove that

ū′
q(θ) = O(h3q)

v̄′
q(θ)/h = O(h3q)

We can thus indeed conclude that, in order to be accurate up to order r in
h, we need to consider all terms p̄q(θ), q = 0, 1, 2, . . . for which 3q ≤ r, i.e.
Q = ⌊ r3⌋.

Next we determine the minimal value of N , the degree of the polynomial
approximation V N (x) of V , to obtain a given accuracy.

We first consider the case p = u, and we will show that for i ≥ q − 1 each term
in C̄

(q)
i contains a factor of the form Vj1Vj2 · · ·Vjqh

j1+j2+...+jq+1−2(i−(q−1)).
For C̄(1)

0 , all terms indeed contain an expression Vjh
j+1 and by induction we

find for i > 0 that all terms in C̄
(1)
i have a factor of the form Vjh

j+1−2i, since
C̄

(0)
i (θ) = 0. Assuming this result holds for all C̄(q−1)

i with i ≥ q − 1, one
verifies that the result also holds for C̄(q)

q−1 and by induction on i, also for C̄(q)
i

with i > q − 1.

This property of C̄(q)
i can now be used to determine the lowest degree N

that leads to the O(hr) approximation. Since C̄
(q)
i is multiplied by h2i+1,

it follows that ūq(θ) contains terms with factors Vj1Vj2 · · ·Vjqh
j1+j2+...+jq+2q

with 1 ≤ jk ≤ N , k = 1, . . . , q. For q = 1 we have Vjhj+2, which can only
be discarded when j > r − 2. Thus choosing N = r − 2 will only discard
these terms. The choice N = r − 2 is also sufficient when q > 1. We can thus
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conclude that, in order to obtain accuracy up to order hr in ū(θ) it suffices to
take N = r − 2.

For p = v, one similarly shows that all terms in C̄
(q)
i contain expressions of

the form Vj1Vj2 · · ·Vjqh
j1+j2+...+jq−2(i−q) for i ≥ q. Then v̄q(θ)/h contains

terms with factors Vj1Vj2 · · ·Vjqh
j1+j2+...+jq+2q and all necessary terms will be

generated when N = r − 2.

For the expressions of the derivatives ū′(θ) and v̄′(θ)/h, no extra term is needed.
So in summary, ∆V can be truncated to a degree of r − 2.

To illustrate this theorem, we give the first terms in the error ∆p̄(Q) = p̄(θ) −
Q∑

i=0
p̄i(θ) of the propagation formulae.

Zero correction terms:

∆ū(Q=0) = h3
((

1
2θ

3 − 1
2θ

2
)
V1η0 − 1

2θ
3V1η1

)
+ O(h4)

∆v̄(Q=0)/h = h3
((

1
2θ

4 − 1
2θ

3
)
V1η1

)
+ O(h4)

∆ū′
(Q=0) = h3

((
1
2θ

2 − 1
2θ
)
V1η−1 +

(
1
2θ

2 − 1
2θ
)
V1η0

)
+ O(h4)

∆v̄′
(Q=0)/h = h3

((
1
2θ

3 − 1
2θ

2
)
V1η0 + 1

2θ
3V1η1

)
+ O(h4)

One correction term:

∆ū(Q=1) = h6
((

1
8θ

6 − 1
4θ

5 + 1
8θ

4
)
V 2

1 η1 +
(

− 7
24θ

6 + 1
4θ

5
)
V 2

1 η2

)

+ O(h7)

∆v̄(Q=1)/h = h6
((

1
8θ

7 − 1
4θ

6 + 1
8θ

5
)
V 2

1 η2 − 1
24θ

7V 2
1 η3

)
+ O(h7)

∆ū′
(Q=1) = h6

((
1
8θ

5 − 1
4θ

4 + 1
8θ

3
)
V 2

1 η0 +
(

1
12θ

5 − 1
4θ

4 + 1
8θ

3
)
V 2

1 η1

− 7
24θ

5V 2
1 η2

)
+ O(h7)
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∆v̄′
(Q=1)/h = h6

((
1
8θ

6 − 1
4θ

5 + 1
8θ

4
)
V 2

1 η1

+
(

5
24θ

6 − 1
4θ

5
)
V 2

1 η2

)
+ O(h7)

Two correction terms:

∆ū(Q=2) = h9
((

1
48θ

9 − 1
16θ

8 + 1
16θ

7 − 1
48θ

6
)
V 3

1 η2

+
(−1

12 θ
9 + 7

48θ
8 − 1

16θ
7
)
V 3

1 η3 + 1
48θ

9V 3
1 η4

)
+ O(h10)

∆v̄(Q=2)/h = h9
((

1
48θ

10 − 1
16θ

9 + 1
16θ

8 − 1
48θ

7
)
V 3

1 η3

+
(

− 1
48θ

10 + 1
48θ

9
)
V 3

1 η4

)
+ O(h10)

∆ū′
(Q=2) = h9

((
1
48θ

8 − 1
16θ

7 + 1
16θ

6 − 1
48θ

5
)
V 3

1 η1

+
(

− 1
24θ

7 + 1
16θ

6 − 1
48θ

5
)
V 3

1 η2

+
(

− 7
48θ

8 + 7
48θ

7
)
V 3

1 η3

)
+ O(h10)

∆v̄′
(Q=2)/h = h9

((
1
48θ

9 − 1
16θ

8 + 1
16θ

7 − 1
48θ

6
)
V 3

1 η2+
(

1
24θ

9 − 5
48θ

8 + 1
16θ

7
)
V 3

1 η3 − 1
48θ

9V 3
1 η4

)
+ O(h10)

To illustrate the second part of the theorem, we consider ∆p̄(N) = p̄(θ) − p̄N (θ)
whereby p̄N (θ) is obtained from p̄(θ) in which Vi = 0 if i > N .

Truncation of ∆V to degree 0:

2 ∆ū(N=0) = h3 ((θ3 − θ2)V1η0 − θ3V1η1
)

+ O(h4)
2
h

∆v̄(N=0) = h3 ((θ4 − θ3)V1η1
)

+ O(h4)
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2 ∆ū′
(N=0) = h3 ((θ2 − θ

)
V1η−1 +

(
θ2 − θ

)
V1η0

)
+ O(h4)

2
h

∆v̄′
(N=0) = h3 ((θ3 − θ2)V1η0 + θ3V1η1

)
+ O(h4)

Truncation of ∆V to degree 1:

2 ∆ū(N=1) = h4 ((2θ4 − 3θ3 + θ2)V2η0 +
(
−3θ4 + 3θ3)V2η1

)
+ O(h5)

2
h

∆v̄(N=1) = h4 ((2θ5 − 3θ4 + θ3)V2η1 − θ5V2η2
)

+ O(h5)

2 ∆ū′
(N=1) = h4 ((2θ3 − 3θ2 + θ

)
V2η−1 +

(
3θ3 − 3θ2 + θ

)
V2η0

−3θ3V2η1
)

+ O(h5)
2
h

∆v̄′
(N=1) = h4 ((2θ4 − 3θ3 + θ2)V2η0 +

(
3θ4 − 3θ3)V2η1

)
+ O(h5)

Truncation of ∆V to degree 2:

2 ∆ū(N=2) = h5 ((5θ5 − 10θ4 + 6θ3 − θ2)V3η0 +
(
−10θ5 + 15θ4 − 6θ3)V3η1

+5θ5V3η2
)

+ O(h6)
2
h

∆v̄(N=2) = h5 ((5θ6 − 10θ5 + 6θ4 − θ3)V3η1 +
(
−5θ6 + 5θ5)V3η2

)
+ O(h6)

2 ∆ū′
(N=2) = h5 ((5θ4 − 10θ3 + 6θ2 − θ

)
V3η−1

+
(
10θ4 − 15θ3 + 6θ2 − θ

)
V3η0

+
(
−15θ4 + 15θ3)V3η1

)
+ O(h6)

2
h

∆v̄′
(N=2) = h5 ((5θ5 − 10θ4 + 6θ3 − θ2)V3η0 +

(
10θ5 − 15θ4 + 6θ3)V3η1

−5θ5V3η2
)

+ O(h6)

Remark that in theorem 2.13, in contrast to theorem 2.11, no assumption
is made on the size of Z = δ2(V0 − E). In the proof of theorem 2.11 this
distinction was necessary because error terms were expressed not only in terms
of bounded functions ηi(Z) but also in terms of the unbounded argument Z,
whereas in the proof of theorem 2.13 all error terms were expressed in terms
of ηi(Z). This enables us to give O(hN+2) error estimates for all Z. However,
for sufficiently large negative Z(h) ≪ 0 the O(hN/

√
E) error estimate given

in theorem 2.11 is sharper than the one given in theorem 2.13. This new
result shows that the order Pass for large and negative Z is the same as the
order for small values for Z, thus P0 = Pass. So from now on, we can denote
a CP-method as CPM{r}, this method will be accurate with order O(hr) if
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N = r − 2 and Q = ⌊ r3⌋. As a demonstration, we give the formulae for the
fourth order method CPM{4}:

2ū(4) = 2η−1 + h3 ((θ3 − θ2)V1η0 − θ3V1η1
)

+ h4 ((2θ4 − 3θ3 + θ2)V2η0 +
(
−3θ4 + 3θ3)V2η1

)

2
h
v̄(4) = 2θη0 + h3 ((θ4 − θ3)V1η1

)
+ h4 ((2θ5 − 3θ4 + θ3)V2η1 − θ5V2η2

)

2ū′(4) = 2Z
hθ
η0 + h2 ((θ2 − θ

)
V1η−1 +

(
θ2 − θ

)
V1η0

)

+ h3 ((2θ3 − 3θ2 + θ
)
V2η−1 +

(
3θ3 − 3θ2 + θ

)
V2η0 − 3θ3V2η1

)

2
h
v̄′(4) = 2

h
η−1 + h2 ((θ3 − θ2)V1η0 + θ3V1η1

)

+ h3 ((2θ4 − 3θ3 + θ2)V2η0 +
(
3θ4 − 3θ3)V2η1

)
.

Furthermore, theorem 2.13 also gives more insight in the number of correc-
tion terms Q needed to construct higher order methods. In Matslise 2.0,
CPM{18, 16} was constructed with N = 16 and Q = 11. Theorem 2.13 shows
that all necessary terms can be generated with Q = 6 correction terms.

Evaluating eigenvalues
Once an eigenvalue is computed in Matslise or Matslise 2.0, the correspond-
ing eigenfunction can be visualized. Since the mesh is coarse, such a visual-
ization can only be achieved if extra function evaluations are available in a
sufficient number of points. Neither Matslise nor Matslise 2.0 were optimized
do to so. To visualize the eigenfunction yk that corresponds to a particular
eigenvalue Ek, a new, sufficiently fine mesh is constructed, and all necessary
computations are carried out once again.

To explain why this approach was chosen in Matslise and Matslise 2.0, let
us consider the propagation matrix in (2.17). From theorem 2.10, we learn that
each matrix element can be expressed as a polynomial in δ, whose coefficients
depend via Z = (V0 −E)δ2 on the functions ηi and δ-dependent polynomials Cj
that also contain powers of the step length h and the coefficients Vn computed
by (2.16). To compute the formulae in CPM{18} for instance, we will take a
look at the expression for u(δ):

u(δ) =
6∑

i=−1
Ci(δ)ηi(δ),
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with Ci a polynomial in δ,

Ci =
16∑

j=0
di,jδ

j ,

where di,j is a polynomial of degree 16 − j in h with coefficients in V1, . . . , V16.
As an example we give a small taste of what d4,9 looks like:
d4,9 =h7 (0.03125V 4

2 + 0.40625V1V
2
2 V3 + 0.21875V 2

1 V
2
3 + 0.46875V 2

1 V2V4

+ 0.1875V 3
1 V5 − 67.8125V 2

3 V4 − 74.375V2V
2
4 − 158.375V2V3V5

− 196.875V1V4V5 − 96.5625V 2
2 V6 − 218.875V1V3V6 − 275.0V1V2V7

− 199.125V 2
1 V8 + 159909.75V1V11 + 101029.5V10V2 + 27184.5V 2

6

+56164.5V5V7 + 62181.0V4V8 + 74868.75V3V9)
+ h6( . . . ) + . . .

Although these coefficients can all be computed analytically, it was far from
practical to implement these very long formulae in software. Since one was
mainly interested in the computation of the eigenvalues, the matrix elements
in the propagation matrix were in fact only implemented for δ = h, in which
case the formulae could be significantly simplified, which in turn had a positive
impact on the computation speed.

For the applications we have in mind, this approach is too time-consuming. We
decided to develop a new algorithm that is able to reuse all the data that was
previously calculated. Therefore, we have chosen to implement in Matslise 3.0
a δ-independent higher order method that is combined with a δ-dependent
formula of lower order. The higher order method is the CPM{18}-formula
(i.e. N = 16 and Q = 6) that was also used in Matslise and Matslise 2.0.
For our error estimation, a δ-dependent version of CPM{16} is implemented
(N = 14 and Q = 5), which also allows the fast and accurate evaluation of
the eigenfunctions in arbitrary points. In section 2.5, we will present some
numerical experiments in which eigenfunctions are computed as well.

2.4 Periodic 1D Schrödinger equation
In contrast to (separated) Robin boundary conditions, in this section we will
study the case of generalized periodic boundary conditions. Assume we are
solving a regular Sturm–Liouville equation

−dp(x)y′(x)
dx + q(x)y(x) = λw(x)y(x) (2.28)
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on a domain [a, b], with generalized periodic boundary conditions:
(

y(a)
p(a)y′(a)

)
= K

(
y(b)

p(b)y′(b)

)
. (2.29)

In expression (2.29), K is assumed to be a 2 × 2 real matrix with determinant
1 [14]. If K = I, these boundary conditions are called periodic, if K = −I then
they are called antiperiodic.

In section 2.1.1, we have provided some theorems about regular Sturm–Liouville
problems with homogeneous (separated) Robin boundary conditions. From all
these theorems, only theorem 2.1 is also applicable here: all eigenvalues are
real, and eigenfunctions can always be scaled to be real as well.

Following section 2.2 and 2.3, due to the Liouville-transformation (from
section 2.1.2), it is sufficient to only consider Schrödinger problems with
p(x) = w(x) = 1.

Since the equation has not changed, the idea and computation of a piecewise
constant approximation, perturbation terms and a propagation matrix are still
valid and valuable. There are just a few related problems. First, what do we
propagate? No obvious initial conditions are available. And secondly, we are
still only interested in continuous and continuously differentiable functions, so
the idea of a matching error is relevant. But how can we compute the index
of an eigenvalue? Without this, it would be difficult to ensure all requested
eigenvalues are found.

For this we employ the results from Binding and Volkmer [15, 14] to expand
the Prüfer transformation. In theorem 2.12, the Prüfer-angle function θ(x) was
defined. This definition assumed initial conditions y(a) = βa and p′(a)y(a) =
−αa. In the periodic case, no such initial conditions are available. Therefore,
we define the Prüfer-angle as a function of the initial conditions y(a) = sin(α)
and p(a)y′(a) = cos(α). For a fixed value of E, define θα(x) with the ordinary
differential equation (2.23) and initial conditions θα(a) ∈ [0, π[ and

tan θα(a) = S(a) tan(α).

As in theorem 2.12, it is necessary to consider the difference with the rightmost
boundary condition. For this we define the unique π-periodic function β(α)
with β(0) ∈ ]−π, 0] and

tan(β(α)) = S(b)k11 sin(α) + k12 cos(α)
k21 sin(α) + k22 cos(α) ,
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with
K =

(
k11 k12
k21 k22

)
.

With this β(α), we define

δα(E) = θα(b) − β(α),
m(E) = min

α∈R
δα(E)

and M(E) = max
α∈R

δα(E). (2.30)

In these expressions we have made the dependence on E explicit, as E was
previously assumed to be fixed.

The following lemma and theorems with proofs can be found in [15] and [13].

Lemma 2.14 (Binding and Volkmer 2012).

• The functions m and M are continuous and strictly increasing.

• For each E, we have the inequalities

−π < m(E) < M(E) < m(E) + π.

For the following theorems we need to distinguish between k12 < 0 ∨ k12 = 0 <
k11 and the opposite. Let us call the former the periodic case, and the latter
the antiperiodic case.

Theorem 2.15 (Binding and Volkmer 2012). For each eigenvalue λ of the Sturm–
Liouville equation (2.28) subject to generalized periodic boundary conditions,
either m(λ) = kπ or M(λ) = kπ with k integer. In the periodic case, k will be
even, in the antiperiodic case, k will be odd.

The last theorem gives us a coupling between the function m(E),M(E) and
the eigenvalues of the Sturm–Liouville problem. To reliably determine the
index of an eigenvalue we also need the converse theorem.

Theorem 2.16 (Binding and Volkmer 2012). Define λ+
k to be the unique value

for which m(λ+
k ) = kπ and λ−

k to be the unique value such M(λ−
k ) = kπ. There

is no value λ−
0 .

• If k is even (for the periodic case) or odd (for the antiperiodic case),
then all values λ±

k are eigenvalues of the corresponding Sturm–Liouville
problem.
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λ+
0 λ−2 λ+

2 λ−4 λ
+
4

0

2π

4π

M(E)
m(E)

Figure 2.12: The scaled Prüfer transformation with different initial conditions
(gray lines) for the Schrödinger problem with q(x) = 3x2(π − x) on [0, π]. The
functions m(E) and M(E) from (2.30) are drawn as well.

• There are no other eigenvalues.

• λ+
k < λ−

k+1 for each k ≥ 0.

• An eigenfunction belonging to λ±
k has exactly k zeros in the interval [a, b[.

This theorem characterizes all eigenvalues of regular Sturm–Liouville problems
with periodic boundary conditions. The eigenvalues are countable. They have
a lower bound: λ+

0 (for the periodic case) and λ+
1 (for the antiperiodic case).

Also, an eigenvalue has at most multiplicity two. Furthermore, it is known that
λ±
k → ∞ if k → ∞.

As an illustration, we provide figure 2.12. Here, the expression δα(E) is
visualized for varying initial conditions expressed with α. All these curves
are captured in between m(E) and M(E). The first five eigenvalues of the
considered problem are indicated as well. We see that for these values either
m(E) or M(E) is an even multiple of π.

To determine the index of an eigenvalue, theorem 2.16 assures us that using
the function m(E) and M(E) is sufficient. But efficiently computing these
functions, is no easy task. Since they are defined as extreme values over all
possible initial conditions, there is no straightforward way to evaluate them.

We propose to propagate two different initial conditions and use the inequality
from lemma 2.14 to estimate m(E) and M(E). More concretely, we apply the
propagation matrix from (2.18), not to a single vector, but to a pair of vectors,
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δ1(E) + π δ2(E)− π

Figure 2.13: The functions δ2(E)−π and δ1(E)+π for the periodic Schrödinger
problem with q(x) = 3x2(π − x) on [0, π]. The search intervals from (2.31) are
highlighted in red.

each corresponding to different initial conditions10. Both these vectors give
rise to two estimates δ1(E) and δ2(E) of δα(E). Without loss of generality we
assume m(E) ≤ δ1(E) ≤ δ2(E) ≤ M(E). With lemma 2.14, we can deduce

δ2(E) − π < m(E) and M(E) < δ1(E) + π.

Suppose we want to find eigenvalues λ−
k and λ+

k . Now we search for the values
E−
k and E+

k such that

δ1(E−
k ) + π = kπ and δ2(E+

k ) − π = kπ. (2.31)

By construction, we know for certain that the interval [E−
k , E

+
k ] now contains λ−

k

and λ+
k , and that it contains no other eigenvalues. In figure 2.13, these intervals

are visualized. The last issue left is that the matching error defined in (2.19) no
longer exists. There, we started with a single fixed initial condition, propagated
this to the matching point and verified that the resulting eigenfunction is
continuous and continuously differentiable.

For the periodic problem, no initial values are known. So, if any initial condition
exists such that the resulting eigenfunction is indeed smooth in the matching

10Any pair of linear independent initial conditions will do. In our implementation we have
chosen to use y1(a) = 1 and y′

1(a) = 0 for the first initial condition, y2(a) = 0 and y′
2(a) = 1

for the second.
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6 det M(E)

Figure 2.14: A close-up of the determinant of M(E) from (2.32) for the same
problem as used in figure 2.12.

point, then the corresponding value for E is an eigenvalue of the periodic
Schrödinger problem. We are not able to propagate all initial conditions.
However, since we are working with a linear differential equation, the problem
can be translated into finding any linear combination of u(x) (with u(a) = 1
and u′(a) = 0) and v(x) (with v(a) = 0 and v′(a) = 1) such that the function
is smooth in the matching point xm, while satisfying the boundary conditions.
Call uL(x) the solution propagated from the left-hand side of the domain and
uR(x) the solution propagated from the right-hand side of the domain, and
analogous for vL(x) and vR(x). Now the question can be reformulated as: do
there exist linear combinations cL and cR such that cL = KcR and

(
uL(xm) vL(xm)
u′
L(xm) v′

L(xm)

)
cL =

(
uR(xm) vR(xm)
u′
R(xm) v′

R(xm)

)
cR?

Or, in other words: find values for E such that

M(E) :=
(
uL(xm) vL(xm)
u′
L(xm) v′

L(xm)

)
K −

(
uR(xm) vR(xm)
u′
R(xm) v′

R(xm)

)
(2.32)

becomes singular.

In summary, the function det M(E) has exactly two (or one with double
multiplicity) zeros in the interval [E1, E2]. As a demonstration we provide
figure 2.14. Here det M(E) is displayed for the same test problem as in
figure 2.12. For k = 2 we found E1 ≈ 8.064 and E2 ≈ 17.344. The eigenvalues
in this interval are λ−

2 ≈ 11.075 and λ+
2 ≈ 14.032.
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If an eigenvalue λ−
k = λ+

k is not simple, that is to say, if it has a double
multiplicity, then this will be visible in det M(λ−

k ). For these values det M(E)
will have a double root11.

In Matslise 3.0 and Pyslise we have implemented this theory, for now only
when K = I. In section 2.5.6 we present a numerical experiment where we
demonstrate how our program can be used.

2.5 Numerical experiments
As a first numerical experiment, let us verify the order in h and make an
estimate for the order in k. For this, we use the same problem as in figures 2.6
and 2.7.

2.5.1 A first example
Consider the Schrödinger problem with equation

−y′′ + 100 cos2(x) y = λy, (2.33)

on the domain [a, b] = [0, π] and with homogeneous Dirichlet boundary condi-
tions.

Before jumping into the graphs, we have to note that Matslise 3.0 has auto-
matic step size selection built in. This allows the algorithm to generate its own
piecewise approximation of the potential. But, this also implies that a user
is not directly able to control the number of subintervals used, which makes
generating a figure like 2.6 or 2.7 more difficult.

To generate figures 2.15 and 2.16 we have solved 100 times the test problem
with different tolerances between 2−10 ≈ 10−3 and 2−30 ≈ 10−9. We have
grouped the errors of each of these solutions by the number of subintervals
Matslise 3.0 used, and averaged them for each eigenvalue.

In figure 2.15, we see that the number of subintervals varied between 4 and
10. Unsurprisingly, if Matslise used more subintervals, the results were more
accurate. From the theory, we know that the propagation error from the
constant perturbation method CPM{18} is of the order O(h18). We notice this
same order in the error on the eigenvalue.

11Numerically, it could be possible that this function has no root at all. But then the
minimum will be close to zero. When implementing this, care should be taken.



78 Chapter 2. 1D Schrödinger equations

π
4

π
5

π
6

π
7

π
8

π
9

π
10

Average subinterval length

2−17

2−22

2−27

2−32

2−37

2−42

O(h18)

k = 0

k = 1

k = 3

k = 7

Figure 2.15: Relative error of the found eigenvalues of problem (2.33) by using
Matslise 3.0.
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Figure 2.16: Relative error of the found eigenvalues of problem (2.33) by using
Matslise 3.0. The graphs are in function of the index of the eigenvalue.
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From the theory, we know little about the error estimate with respect to k.
In theorem 2.6, we learned that for the Pruess method this order was O(k−4).
With Matslise (both 2.0 and 3.0) we observe a much more considerable value,
visually we suspect this to be O(k−9) or O(k−10).

These numerical experiments may serve as a kind of tutorial to get to know
Pyslise, this is the python-package built on top of Matslise 3.0. So we will
provide the code each time to solve the problem at hand. Here, to generate
the first fifty eigenvalues the following code can be used.

1 from pyslise import Pyslise
2 from math import pi, cos
3

4 V = lambda x: 100*cos(x)**2
5

6 problem = Pyslise(V, 0, pi, tolerance=1e-12)
7 print(problem.eigenvaluesByIndex(0, 50, (0, 1), (0, 1)))

The first few lines import the necessary functions. The next line defines the
potential V (x). Then, a Pyslise object is constructed. Here the user needs
to provide the potential V (x), and the left (0) and right (π) end points of the
domain. Optionally a tolerance may be specified. Because we are working
in double precision in python, anything less than approximately 10−16 is
nonsensical.

Next, we find the eigenvalues. For this we use .eigenvaluesByIndex, a
function defined on Pyslise objects. This function expects four arguments:
imin, imax, ya and yb. It will return all eigenvalues λi for which imin ≤ i < imax
of the problem with boundary conditions

(
y(a)
y′(a)

)
= saya and

(
y(b)
y′(b)

)
= sbyb.

In this expression, sa and sb are some scaling factors. Note that providing
boundary conditions like this is different from the more mathematical notation

αay(a) + βay
′(a) = 0.

Our program expects a vector ya =
(
βa −αa

)⊺ , and analogous for yb. We
have chosen for these types of arguments to be more in line with how propagation
is executed in the constant perturbation method.
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−2 −1 0 1 2

Figure 2.17: Visualization of the subintervals chosen by Matslise 3.0 for the
problem with potential (2.34), without specifying jumps.

−2 −1 0 1 2

Figure 2.18: Visualization of the subintervals chosen by Matslise 3.0 for the
problem with potential (2.34), with specifying jumps.

2.5.2 A potential with jumps
In the next numerical experiment, we demonstrate another feature of constant
perturbation methods. Since the potential function is piecewisely approximated,
the potential may be discontinuous as long as the jumps are situated on the
boundary between two consecutive subintervals.

Consider the Schrödinger problem with homogeneous Dirichlet boundary con-
ditions on the interval [−2, 2] with potential function

V (x) =
{

0 if |x| ≤ 1,
30 otherwise.

(2.34)

If we use a similar program as before this may look like the following.

1 from pyslise import Pyslise
2

3 def V(x):
4 return 0 if abs(x) < 1 else 30
5

6 well = Pyslise(V, -2, 2, tolerance=1e-12)
7 print(well.eigenvaluesByIndex(0, 5, (0, 1), (0, 1)))

This program gives the correct results, but it used 15 subintervals. Those
intervals are visualized in figure 2.17. If we change the line with the construction
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Figure 2.19: These are the first five eigenfunctions of the Schrödinger prob-
lem with potential (2.34) on [−2, 2] with homogeneous Dirichlet boundary
conditions.

of the Pyslise object to

1 well = Pyslise(V, -2, 2, tolerance=1e-12, jumps=[-1, 1])

only 3 subintervals are used. For completeness, we have visualized these 3
subintervals in figure 2.18.

In any case, the first five eigenfunctions of this Schrödinger problem can be
visualized with the following code.

1 import numpy as np
2

3 x = np.linspace(-2, 2, 200)
4

5 plt.plot(x, np.vectorize(V)(x))
6 for i, E, f in well.eigenpairsByIndex(0, 5, (0, 1), (0, 1)):
7 plt.plot(x, E + f(x)[0,:])

This yields a similar image to figure 2.19. In this code, .eigenpairsByIndex is
a function which expects the same arguments as .eigenvaluesByIndex. But
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this function returns a list with tuples of three elements for each eigenvalue
found: the index i, the eigenvalue E and the eigenfunction f. This f can be
treated as any python function, and be evaluated in any value x inside the
domain to get the value of the eigenfunction f(x) and its derivative f ′(x).

2.5.3 Mathieu’s equation
In the next examples we will compare the numerical accuracy of our new
implementation Matslise 3.0 (and the python package Pyslise) with the
original well-established Matslise 2.0.

As a first direct comparison, we will take a look at Mathieu’s equation [80] on
[0, π] with homogeneous Dirichlet boundary conditions:

d2y

dx2 + 2q cos(2x)y(x) = λy(x). (2.35)

In this expression q is a parameter. In these experiments, we will only consider
q = 1 and q = 10.

By using Pyslise, it is not difficult to find the first 10 eigenvalues of this
equation:

1 from pyslise import Pyslise
2 from math import pi, cos
3

4 q = 1
5 def V(x):
6 return 2*q*cos(2*x)
7

8 mathieu = Pyslise(V, 0, pi, tolerance=1e-8)
9 print(mathieu.eigenvaluesByIndex(0, 10, (0,1), (0,1)))

The results of this computation can be compared with the results from
Matslise 2.0. For different values of the parameter q (q = 1 and q = 10), the
true eigenvalues (calculated with Matslise 2.0 and a tolerance of 10−14) are
used to calculate the error of the eigenvalues obtained from Matslise 2.0 and
Pyslise, both with a tolerance of 10−8. The execution times are reported
as well. These were calculated using matlab’s timeit function or Python’s
timeit function. Both execute the code multiple times to account for fluctua-
tions caused by other system load. These comparisons were run on an Intel
i7-8700K.
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q = 1 Matslise 2.0 Pyslise

5.33ms 0.21ms
−0.1102488169921 6.3 · 10−10 −2.6 · 10−12

3.9170247729985 −8.5 · 10−10 4.2 · 10−12

9.0477392598094 −1.1 · 10−9 −4.1 · 10−12

16.0329700814058 −6.1 · 10−10 −1.6 · 10−11

25.0208408232898 3.9 · 10−10 −2.6 · 10−12

36.0142899106282 5.3 · 10−10 −4.0 · 10−12

49.0104182494239 1.1 · 10−9 1.8 · 10−11

64.0079371892498 1.4 · 10−9 1.6 · 10−11

81.0062503266325 −4.8 · 10−10 4.5 · 10−12

100.0050506751594 −8.7 · 10−10 −9.3 · 10−13

q = 10 Matslise 2.0 Pyslise

6.74ms 0.30ms
−13.9365524792501 5.8 · 10−9 −5.4 · 10−12

−2.3821582359569 2.2 · 10−8 2.9 · 10−12

7.9860691446817 4.7 · 10−10 1.4 · 10−11

17.3813806786230 −3.4 · 10−8 6.4 · 10−12

26.7664263604801 −3.1 · 10−8 −8.2 · 10−12

37.4198587767242 −4.7 · 10−8 −5.1 · 10−12

50.0541572135572 −2.9 · 10−8 1.1 · 10−12

64.8004402930215 2.7 · 10−8 4.1 · 10−12

81.6283131843831 2.7 · 10−8 −3.1 · 10−11

100.5067694628784 4.0 · 10−8 −7.1 · 10−12

Table 2.1: The first 10 eigenvalues for the Mathieu problem (2.35) for q = 1 and
q = 10, the execution times and the absolute errors obtained with Matslise 2.0
and Pyslise with a tolerance of 10−8.
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From table 2.1 there are two things to note. First, Pyslise is more than
20 times faster than Matslise 2.0. This means that our efforts to improve
efficiency are definitely worth it.

Second, the accuracy of Pyslise is a lot higher. This can be explained by the
fact that Pyslise’s error estimates are very conservative. The error estimation
is used to choose the mesh to use. Because Pyslise’s errors are less sharp, it
tends to use more subintervals than Matslise 2.0. These extra intervals lead
to more accurate results. These more accurate results may seem like a benefit,
however in reality, it is not. We requested an accuracy for both programs of
10−8, and Matslise 2.0 respects this beautifully. In other words Matslise 2.0
is able to use the lowest number of subintervals possible, while respecting the
requested accuracy. Pyslise on the other hand, goes above and beyond to
ensure the requested accuracy and overshoots it with quite a lot. This means
that it uses more subintervals than necessary, and is therefore a little less
efficient than it could be.

In practice, and for our use-cases in the following chapters, we have found
Matslise 3.0 and Pyslise to be sufficiently fast. Knowing this, we decided
to keep our error estimate as it is, even though it is more conservative than it
needs to be.

Eigenfunctions
As explained in section 2.3, one of the reasons we developed more complicated
formulae and built a new implementation was the evaluation of the eigen-
functions. To evaluate the eigenfunction in Matslise 2.0, the partition of the
domain has to be recomputed to include the requested evaluation points. If
there are only a limited set of points, and these are known beforehand, then
Matslise 2.0’s methods is sufficient. In many applications however, this is
insufficient.

Assume12 we want to compute an orthogonal projection of a function f(x)
to the truncated basis of the eigenfunctions yi: f(x) =

∑
i=0 ciyi(x). To

compute these numerically we need to approximate the following integrals for
all necessary values for i: ∫ b

a

f(x)yi(x) dx.

In Matslise 2.0, one would choose a fixed grid beforehand and evaluate all
eigenfunctions in exactly these grid points. To approximate the integral, any

12Or take a look at section 3.2.3, where we need to do exactly this.
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q = 1 n = 100 n = 1000 n = 10000
Matslise 2.0 65.3ms 647ms 10180ms

Pyslise 0.387ms 3.05ms 29.3ms

Table 2.2: Execution times needed to compute the first 10 eigenfunctions of
the Mathieu problem (2.35) in n equidistant points.

y0 y1 y2 y3

Matslise 2.0 1.0 · 10−10 6.2 · 10−9 1.7 · 10−10 1.4 · 10−9

Pyslise 4.7 · 10−9 5.9 · 10−9 2.8 · 10−9 1.9 · 10−9

y4 y5 y6 y7

Matslise 2.0 4.0 · 10−11 5.7 · 10−10 8.2 · 10−11 8.6 · 10−10

Pyslise 3.9 · 10−9 2.6 · 10−9 1.4 · 10−9 1.3 · 10−9

Table 2.3: Maximum absolute error in n = 100 equidistant points of the
eigenfunction yn corresponding to λn for the Mathieu problem (2.35) with
q = 1.

quadrature rule can be used, as long as it only uses the values in exactly these
grid points. If a large basis is used, or if f(x) is unpredictable with some steep
regions for example, this approach will only be accurate if a prohibitively dense
grid is used. Ideally some adaptive quadrature rule should be employed. These
numerical integration techniques evaluate the integrand in as many values
as needed to ensure accuracy. When the integrand becomes ‘difficult’, more
evaluations points are dynamically chosen. In the regions where the integrand
is ‘easy’, much fewer evaluations are used. But, these methods, of course, need
a way to evaluate the integrand dynamically, and do not work with a fixed
grid. With this application in mind, our new implementation already has the
benefit of being able to do this, with relatively little computational cost. But
to see the true power of Matslise 3.0 (using the python-package Pyslise),
we compare the computation time for the evaluation of eigenfunctions with
Matslise 2.0. These results are reported in table 2.2.

In this scenario the difference in efficiency becomes apparent. Pyslise is two
orders of magnitude faster than Matslise 2.0. On top of that, this extreme
speedup is achieved without dropping below the requested accuracy. In table 2.3
the maximum error of the eigenfunction for each eigenvalue is tabulated. One
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notices that Matslise 2.0 is more accurate, but remember that the requested
accuracy in this experiment was for both programs 10−8. As long as the results
are more accurate than 10−8, they are successful.

It is remarkable that for the eigenvalues Pyslise was more accurate than
required. For the eigenfunctions, the situation is reversed. This reversion can
be explained by the fact that Pyslise is able to reuse the same grid (which was
accurate to the required tolerance), but Matslise 2.0 computes a new partition
with the grid points used for the computation of the eigenvalue together with
all requested evaluation points of the eigenfunction. This grid is much denser,
and thus unnecessarily more accurate.

2.5.4 Coffey–Evans problem
Another, more challenging problem is the Coffey–Evans equation [81].

−y′′(x) + (β2 sin2(2x) − 2β cos(2x))y(x) = λy(x), (2.36)

with x ∈ [−π
2 ,

π
2 ] and homogeneous Dirichlet boundary condition.

The Coffey–Evans equation has two interesting features: first, it is a symmetric
problem, and second it has triplets of close eigenvalues and the closeness
increases dramatically as the parameter β increases. Accurately discriminating
these close but different eigenvalues is a challenge.

To exploit this symmetry, PysliseHalf can be used. Besides this, the few
lines of Python needed to find the first eigenvalues are very similar to the other
examples.

1 from pyslise import PysliseHalf
2 from math import pi, sin, cos
3

4 beta = 15
5 def V(x):
6 return beta**2 * sin(2*x)**2 - 2*beta * cos(2*x)
7

8 coffey_evans = PysliseHalf(V, pi/2, tolerance=1e-8)
9 print(coffey_evans.eigenvaluesByIndex(0, 10, (0,1)))

In the last line we notice that supplying only one boundary condition is
sufficient; symmetric boundary conditions are expected when using a half-range
reduction. In table 2.4, we present for β = 5, β = 15 and β = 25 the results
of our experiment. Here the reference values of the first nine eigenvalues are
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λ2 ≈ 191.58762704
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λ3 ≈ 191.58763329
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λ4 ≈ 191.58763954

Figure 2.20: A plot of the eigenfunctions y2, y3 and y4 of the Coffey–Evans
problem (2.36) with β = 25.

computed with Matslise 2.0 with a tolerance of 10−14. In the next column
the errors obtained with Matslise 2.0 and a tolerance of 10−8 are given. In
the last column, the errors of Pyslise with the same tolerance of 10−8 are
presented.

Besides the numerical results, also the computational running time is reported
in table 2.4. Similarly to the results from the Mathieu problem, Pyslise was
significantly faster and more accurate. But in contrast to the previous exam-
ple, now one could argue that Matslise 2.0 no longer respects the requested
accuracy of 10−8 for β = 25. However, the relative error is sufficiently small.

As seen previously, eigenfunctions can be visualized. If we want to recreate
graphs similar to figure 2.20, the following code can be used.

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 x = np.linspace(-pi/2, pi/2, 200)
5

6 for i, E, f in coffey_evans.eigenpairsByIndex(2, 5, (0, 1)):
7 plt.plot(x, f(x)[0,:])
8 plt.show()

Notice here that by providing the arguments 2 and 5 to .eigenpairsByIndex,
we only request the eigenvalues and eigenfunctions with index 2, 3 and 4.
Visually these graphs look convincing. But, as a more rigorous verification we
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β = 5 Matslise 2.0 Pyslise

8.94ms 0.33ms
0 0.0005463030588 4.5 · 10−10 2.4 · 10−10

1 17.4201300751401 3.1 · 10−9 1.4 · 10−11

2 26.8313294875207 8.2 · 10−9 5.2 · 10−12

3 30.6514597044625 1.1 · 10−9 −3.2 · 10−12

4 37.9709848127178 −1.6 · 10−8 9.2 · 10−12

5 49.4100375966783 −6.0 · 10−9 −1.8 · 10−11

6 62.2115039443358 −6.7 · 10−9 −3.7 · 10−12

7 76.9997687851650 −3.1 · 10−8 −4.1 · 10−11

8 93.8923408372478 −1.5 · 10−8 −4.5 · 10−11

β = 15 Matslise 2.0 Pyslise

9.71ms 0.54ms
0 0.0000000000035 −1.7 · 10−7 −1.1 · 10−11

1 57.8833068486108 3.2 · 10−7 4.8 · 10−11

2 111.2023333512293 1.9 · 10−7 1.1 · 10−10

3 111.2270694418592 3.1 · 10−7 4.9 · 10−11

4 111.2518808183127 1.9 · 10−7 1.1 · 10−10

5 159.1826724323144 5.3 · 10−9 1.7 · 10−10

6 197.3328583631476 6.3 · 10−8 −7.5 · 10−11

7 199.8690055338356 2.6 · 10−9 6.3 · 10−13

8 203.2295295020015 2.7 · 10−8 −2.1 · 10−10

β = 25 Matslise 2.0 Pyslise

24.36ms 0.61ms
0 −0.0000000000000 −4.4 · 10−7 −2.4 · 10−11

1 97.9345616863637 7.9 · 10−7 −3.2 · 10−11

2 191.5876270396656 8.3 · 10−7 4.8 · 10−11

3 191.5876332913999 1.2 · 10−6 −1.3 · 10−11

4 191.5876395431371 7.2 · 10−7 4.6 · 10−11

5 280.6142452706786 1.7 · 10−7 1.7 · 10−10

6 364.5514239171786 6.2 · 10−8 −4.4 · 10−12

7 364.5556442011433 −8.5 · 10−8 2.2 · 10−10

8 364.5598657470625 6.1 · 10−8 2.4 · 10−10

Table 2.4: Eigenvalues for the Coffey–Evans problem (2.36), with absolute
errors obtained by Matslise 2.0 and Pyslise with a tolerance of 10−8.
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β = 5 y0 y1 y2 y3

Matslise 2.0 2.0 · 10−11 3.2 · 10−10 1.5 · 10−9 2.1 · 10−10

Pyslise 4.2 · 10−9 8.5 · 10−10 1.4 · 10−9 1.4 · 10−9

β = 5 y4 y5 y6 y7

Matslise 2.0 1.5 · 10−9 5.4 · 10−10 5.0 · 10−10 2.2 · 10−9

Pyslise 1.9 · 10−9 1.4 · 10−9 1.8 · 10−9 1.8 · 10−9

β = 15 y0 y1 y2 y3

Matslise 2.0 2.8 · 10−9 1.2 · 10−8 4.0 · 10−6 1.7 · 10−5

Pyslise 2.0 · 10−10 7.3 · 10−10 4.6 · 10−9 5.7 · 10−9

β = 15 y4 y5 y6 y7

Matslise 2.0 4.0 · 10−6 1.8 · 10−10 1.2 · 10−8 1.1 · 10−9

Pyslise 3.5 · 10−9 2.3 · 10−9 2.2 · 10−9 3.3 · 10−9

β = 25 y0 y1 y2 y3

Matslise 2.0 4.6 · 10−9 1.9 · 10−8 8.2 · 10−2 3.1 · 10−1

Pyslise 2.0 · 10−10 6.9 · 10−10 7.0 · 10−6 6.5 · 10−6

β = 25 y4 y5 y6 y7

Matslise 2.0 6.5 · 10−2 3.7 · 10−9 7.8 · 10−6 2.9 · 10−5

Pyslise 7.0 · 10−6 2.2 · 10−9 2.8 · 10−8 2.7 · 10−9

Table 2.5: Maximum error in 100 equidistant points of the eigenfunction
corresponding to each of first eight eigenvalues for the Coffey–Evans problem
(2.36) with β = 5, β = 15 and β = 25.
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β = 15 n = 100 n = 1000 n = 10000
Matslise 2.0 59.9ms 525ms 7508ms

Pyslise 0.344ms 2.58ms 24.5ms

Table 2.6: Computational time used to evaluate the first ten eigenfunctions in
n equidistant points for the Coffey–Evans problem (2.36) with β = 15.

have provided table 2.5. Here the maximum absolute errors in the eigenfunctions
are tabulated. Again, we have used Matslise 2.0 with a tolerance of 10−14

to obtain reference results to compare with. For β = 5, both programs reach
the requested accuracy. When β = 15, Matslise 2.0 starts to lose accuracy,
especially for y2, y3 and y4. Only for β = 25, starts Pyslise to lose accuracy
as well, albeit much less dramatic than Matslise 2.0.

From the theory we expect that the time needed to evaluate the eigenfunction
does not depend on the difficulties to find eigenvalues for that particular
problem. Once an eigenvalue is found, the corresponding eigenfunction should
be easily calculated. The computation time to evaluate an eigenfunction for an
equidistant grid of n points is reported in table 2.6. The remarkable speed-up
we were able to achieve with our new implementation can be observed.

2.5.5 Truncated hydrogen potential
As a next example we will take a look at the truncated hydrogen potential [80]:

V (x) = − 1
x

+ 2
x2 , (2.37)

on the domain [0, 1000] with homogeneous Dirichlet boundary conditions. The
lower eigenvalues are a good approximation for the eigenvalues of the non-
truncated problem (on the domain x ∈ [0,∞[). By now, the code to solve this
problem may seem very familiar.

1 from pyslise import Pyslise
2

3 def V(x):
4 return -1/x + 2/x**2
5

6 hydrogen = Pyslise(V, 0, 1000, tolerance=1e-8)
7 print(hydrogen.eigenvaluesByIndex(0, 10, (0, 1), (0, 1)))
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Matslise 2.0 Pyslise

30.96ms 7.09ms
−0.0625000000000 2.1 · 10−12 8.9 · 10−15

−0.0277777777778 4.9 · 10−12 −2.2 · 10−15

−0.0156250000000 3.4 · 10−12 −9.0 · 10−16

−0.0100000000000 9.4 · 10−13 −2.7 · 10−15

−0.0069444444444 −1.1 · 10−12 1.2 · 10−13

−0.0051020408163 −2.3 · 10−12 −6.3 · 10−13

−0.0039062500000 −2.9 · 10−12 −2.3 · 10−13

−0.0030864197531 −3.0 · 10−12 1.1 · 10−13

−0.0025000000000 −2.7 · 10−12 −9.6 · 10−14

−0.0020661157025 −1.9 · 10−12 1.6 · 10−14

Table 2.7: The first ten eigenvalues for the truncated hydrogen problem (2.37),
the execution times and the errors obtained with Matslise 2.0 and Pyslise
for a tolerance of 10−8.

The potential is unbounded for the left endpoint of the integration interval,
thus this is a non-regular problem. Matslise 2.0 is well-suited to solve such
singular problems. It contains many checks to identify and routines to work
around singularities of the problem. For efficiency reasons, Pyslise does not
have these extra features.

Despite these missing features, Pyslise can still solve the problem. It is even
faster and more accurate. We do note that speedup is less significant than for
non-singular problems. In table 2.7 we see that Pyslise is at least as accurate
as Matslise and approximately four times faster (in contrast to 20 times for
the Mathieu en Coffey–Evans problems).

For the evaluation of the eigenfunctions, this singularity does not matter. The
eigenfunctions are evaluated with a maximal error of less than 10−9, with
timings similar to the previous test problems.

2.5.6 Periodic problem with an asymmetric potential
As described in section 2.4, Matslise 3.0 is able to solve Schrödinger problems
with periodic boundary conditions. To demonstrate this we will solve a problem
also found in [3]. Consider the Schrödinger equation

−y′′(x) + x2(π − x)y(x) = λy(x)
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on the domain [0, π] with periodic boundary conditions: y(0) = y(π) and
y′(0) = y′(π).

To solve this with Pyslise we need to import a different solver, but most of
the code is similar.

1 from pyslise import PyslisePeriodic
2 from math import pi
3

4 def V(x):
5 return x*x*(pi-x)
6

7 problem = PyslisePeriodic(V, 0, pi, tolerance=1e-8)
8

9 print(problem.eigenvaluesByIndex(0, 20))

In this code there are two notable differences to the previous examples. First,
PyslisePeriodic is used as solver. And second, no boundary conditions
are provided to the .eigenvaluesByIndex function. These are unnecessary
because periodic boundary conditions are implied by PyslisePeriodic.

Another difference can be found in the output:

1 [
2 (0, 2.0294161514952878, 1), (1, 6.500490696092834, 1),
3 ...,
4 (18, 326.5881759903209, 1), (19, 402.5834632545595, 1)
5 ]

The function .eigenvaluesByIndex returns a list of all eigenvalues found.
Now for each eigenvalue the tuple has three elements: the index, the eigenvalue
and the multiplicity. From the theory, we know that for periodic problems,
eigenvalues no longer are guaranteed to be unique. An eigenvalue can have a
double multiplicity, and if Pyslise detects this, multiplicity 2 is returned. For
example, if we request much higher eigenvalues with the line

1 print(problem.eigenvaluesByIndex(1000, 1005))

then the following output is generated.

1 [
2 (999, 1000002.5873939216, 2), (1001, 1004006.5873655227, 2),
3 (1003, 1008018.5849614257, 2), (1005, 1012038.5812170412, 2)
4 ]
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Andrew[3] Vanden Berghe[100] Pyslise (10−12)
0 2.029416151495
1 6.5005 6.50049 6.500490696093
2 7.0151 7.01506 7.015056863171
3 18.5848 18.58477 18.584772142361
4 18.6655 18.66548 18.665481445221
5 38.5816 38.58162 38.581627865277
6 38.6215 38.62154 38.621542547363
7 66.5821 66.58204 66.582047792290
8 66.6054 66.60537 66.605365007694
9 102.5825 102.58252 102.582525988841

10 102.5977 102.59772 102.597720549763
11 146.5829 146.58286 146.582865091809
12 146.5935 146.59352 146.593522877933
13 198.5831 198.58310 198.583098056935
14 198.5910 198.59998 198.590975696561
15 258.5833 258.58326 258.583260746092
16 258.5893 258.58931 258.589315759431
17 326.5834 326.58338 326.583377751489
18 326.5882 326.58817 326.588175990321
19 402.5835 402.58347 402.583463254559

Table 2.8: The first twenty eigenvalues for the periodic problem from sec-
tion 2.5.6.

These higher eigenvalues are degenerate, so Pyslise returns multiplicity 2.
This can also be seen in the index of the returned eigenvalues.

In [3], the first twenty eigenvalues are computed to four digits behind the decimal
point. In [100], an extra fifth digit is computed. Matslise 3.0 produces much
more accurate results. In table 2.8, we have tabulated the results from [3],
from [100] and the results obtained with Pyslise and a tolerance of 10−12.
Our computed values agree with the literature up to all five digits, except for
the last eigenvalue where we have found a different rounding.

As an illustration we present the graph of the first three eigenfunctions in
figure 2.21.
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Figure 2.21: A plot of the first three eigenfunctions y0, y1 and y2 with eigen-
values λ0 ≈ 2.029, λ1 ≈ 6.500 and λ0 ≈ 7.015 of the periodic problem from
section 2.5.6.

2.5.7 Sturm–Liouville problems
As a last example we present the following Sturm–Liouville problem from [91]:

−
(
(1 + x)2y′(x)

)′ +
(
x2 − 2

)
y(x) = λexy(x)

on the domain [0, 1] with a homogeneous Dirichlet boundary condition on the
left and a homogeneous Neumann boundary condition on the right: y(0) = 0
and y′(1) = 0.

Solving this in Pyslise can be achieved with the following program.

1 from pyslise import SturmLiouville
2 from math import exp
3

4 def p(x):
5 return (1 + x)**2
6

7 def q(x):
8 return x * x - 2
9

10 def w(x):
11 return exp(x)
12

13 slp = SturmLiouville(p, q, w, 0, 1, tolerance=1e-8)
14 print(slp.eigenvaluesByIndex(0, 10, (0, 1), (1, 0)))
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Siedlecki [91] Matslise 2.0 Pyslise error
1.17049262 1.170492759902 2.2 · 10−12

26.8633617 26.863367646410 8.3 · 10−12

78.5490026 78.549045264140 2.4 · 10−12

156.079996 156.080156224823 7.2 · 10−12

259.455041 259.455476210930 4.7 · 10−12

388.673823 388.674790600773 5.7 · 10−12

543.736155 543.738037129327 5.2 · 10−12

724.641861 724.645192282213 4.5 · 10−13

Table 2.9: Comparing numerical results for the problem from section 2.5.7. In
the right most column the absolute error of our implementation with a specified
tolerance of 10−8 are reported.

Here we are using the SturmLiouville solver. We now have to specify the
three defining functions p(x), q(y) and w(x). Notice that in the last line we
have specified y(0) = 0 and y′(0) = 1 to mark the left boundary condition, and
y(1) = 1 and y′(1) = 0 to mark the right boundary conditions. Remember that
solutions will only satisfy these boundary conditions after some rescaling.

Under the hood, the SturmLiouville solver will compute Liouville’s trans-
formation as in section 2.1.2. This yields a Schrödinger problem for which
Matslise 3.0 will use the constant perturbation method, just as for the Pyslise
solver.

In table 2.9, we have compared the accurate values from Matslise 2.0 to
the reported values in [91] and our new implementation. Note that for our
implementation the absolute errors are reported, which means that the relative
error is close to machine precision.

2.6 Matslise 3.0 – A new implementation
Later on in chapters 3 and 4, we develop methods to solve time-independent
two-dimensional Schrödinger problems. These methods will depend upon our
ability to solve the one-dimensional problem accurately and efficiently. Not only
eigenvalues will be required, but evaluating eigenfunctions will be essential.

This need for speed drove us away from Matslise or Matslise 2.0. These
are efficient and accurate packages which mainly focus on the computation of
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the eigenvalues with automatic regularity detection. In our case, we need a
package that allows the fast and accurate solution of the eigenvalues as well
as of the eigenfunctions of regular one-dimensional Schrödinger-problems. We
investigate possible bottlenecks of performance of the Matslise 2.0 package
and its routines.

Let us start with the computation of the eigenvalues. The original Matslise
package as well as its successor Matslise 2.0 are highly optimized packages,
in the sense that they are designed to compute the eigenvalues of various
types of regular and irregular Schrödinger and Sturm–Liouville problems as
efficiently as possible. For this, only one coarse mesh, typically consisting of
only a few mesh points, is determined. The mesh is then used for all eigenvalue
computations. This means that all evaluations of the coefficient functions C(q)

i

from theorem 2.10 are performed during the construction of the mesh and are
saved for later reuse. This makes the actual computation of the eigenvalues, at
least in an interpreted language such as matlab, as fast as possible. For the
actual computation of the eigenvalues, the main bottleneck of performance of
Matslise 2.0 is matlab. This environment creates an interpreted language
which is inherently slower than a compiled one like Fortran or C. However,
using matlab has the great benefit of being user-friendly. Even less seasoned
programmers are able to easily implement their Sturm–Liouville problem. In
Matslise 2.0, a graphical user interface is provided to aid in specifying the
user’s problem, without any programming knowledge needed.

Since we wanted to reimplement Matslise into a faster compiled language,
we had to consider what we would gain but also what we would lose. Speed
and efficiency only go so far if the program is implemented in a prohibitively
difficult package to use. As stated, one of the great strengths of Matslise 2.0
is its ease of use. We were hesitant to use compiled languages for this reason.

In the current day and age, one of the more popular languages, with a larger
community than Fortran’s or matlab’s is python. Like matlab, this language
is interpreted, which makes it equally slow [20, 97]. However, in python it is
not hard to add native packages. These packages are not written in python
but in some other, more low-level, language. This other language is compiled
to native machine code, and nicely packaged to be called from within python.

These native packages are the answer to the efficiency versus user-friendliness
problem we were faced with. The high performing part can be efficiently
implemented in a compiled language, but the code that the user will develop
can be written in the more approachable python. The last question before
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we could build our new implementation of Matslise was: “Which compiled
language?”. This language should be able to support the building of python-
packages, it should have support for linear algebra, preferably with optimized
BLAS libraries, and it should support code architecture for numerical libraries.
All of these requests makes C++ a prime candidate. In combination with
pybind [53] for the python compatibility and Eigen v3 [33] as linear algebra
library we have the perfect tools to satisfy all our needs.

Try it out!
The new implementation, which we called Matslise 3.0, can be accessed and
executed in three different ways.

• As a C++ program: the source code of the package is hosted at https://
github.com/twist-numerical/matslise. There, instructions to com-
pile it can be found.

• As a python-package: in order to avoid that users need to compile the
packages themselves, we also provide a 64-bit prebuilt python package
Pyslise, for Linux, Windows and macOS. Installing Pyslise is as easy
as running:

1 pip install pyslise

• Online: lastly we also have created the possibility to run this code inside
the web browser: https://matslise.ugent.be/ti1d.

2.6.1 Implementation challenges
Building a new implementation from an existing package allows for incorporat-
ing some learned lessons from the previous implementations, and simplifying
some functionality. In practice this is harder than it sounds. For example, when
simplifying some functionality one has to carefully consider why the original
code did not include this simplification. Did the programmer forget to consider
it? Was it a remnant of a previous version, or of removed code? Or something
else entirely? In the hard way, I have learned that, in numerical algorithms
especially, the original programmer probably had very good reasons not to
include something. More times than I would like to admit, I simplified some
code of Matslise 2.0 to include in the new implementation, only to discover
that my ‘simplification’ did not cover all edge-cases or all possible scenarios. In
the best cases I made these discoveries quickly upon testing that code. Other
times these discoveries only occurred a few months or even years later when
getting stuck on a particular difficult bug.

https://github.com/twist-numerical/matslise
https://github.com/twist-numerical/matslise
https://matslise.ugent.be/ti1d
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In this section, we want to highlight some challenges we encountered while
building the new implementation. Some of these are a consequence of the
choice of language we have made, some are some inherent challenges of the
constant perturbation method and others are self-inflicted by the ambitious
goals we set out for ourselves.

2.6.1.1 Computation of the perturbation term formulae

In theorem 2.10, a nice procedure is outlined to determine each of the propa-
gators u(δ) and v(δ). In short both propagators are written in the following
form:

u(δ) =
Q∑

q=−1
cq(δ)ηq(δ)

with ci a polynomial in δ,

cq(δ) =
N∑

i=0
dq,iδ

i, (2.38)

and dq,i is a polynomial in h with coefficients in V1, . . . , VN .

Once a mesh is constructed and V1, . . . , VN are determined, the values for dq,i
are fixed on each subinterval. This means that these values can be computed
once and be reused for each guess for λ. In practice, the formulae for the values
of di,j are quite complicated. For small values of N and Q, it would be feasible
to implement these values by hand, for the large N and Q we are using here,
this is intractable.

We could compute these formulae each time we construct a mesh by implement-
ing some symbolic computation in C++. This could work, but it is less than
ideal. Not only would this include a large computational burden, it would also
be quite labor-intensive to implement the symbolic tools needed to pull this
off. A better strategy is to use a symbolic toolbox like maple, mathematica,
or sage and let it generate the necessary C++ code only once, before compiling
the program. Computing the formulae once and generating code for them, also
has the added benefit that the C++ compiler can optimize them and generate
the best possible machine-code.

In the appendices of [67], some maple programs are present which are able to
determine the necessary values if h = δ. For our case, because we want to have
these formulae for general δ, a new program needs to be written. In the next
chapter, the method we develop also uses constant perturbation formulae for
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product

V1

power

sum

δ

h

2

V0

Figure 2.22: A possible tree of operations for V1(δ + h)2V0.

coupled systems of Schrödinger equations, therefore it would also be valuable
if this new program is also able to compute these. And lastly, it would be a
nice-to-have if these formulae could be generated in a matter of minutes instead
of weeks, for example.

We have implemented this in sage [89]. Here it is possible to precisely specify
what type each variable is. Mathematically, all expressions are polynomials in
h, δ and V0, . . . , VN . As such, all computations will be executed in the following
polynomial ring:

Q[V0, . . . , Vn][h][δ].

This means that all expressions in sage will have the following structure with
coefficients r ∈ Q:

∑

i


∑

j


 ∑

k0,...,kN

ri,j,k0,...,kN
V k0

0 · · ·V kN

N


hj


 δi.

This structure allows sage to optimize each expression, in contrast to working
with general symbolic expressions, which would also allow other operations
such as division or sin for example.

As an example, the sage program starts with defining the variables V0, V1, V2,
h and δ.

1 pr_V = QQ['V0', 'V1', 'V2']
2 pr_h = pr_V['h']
3 pr_delta = pr_h['delta']
4

5 V0, V1, V2 = pr_V.gens()
6 h = pr_h.gen()
7 detla = pr_delta.gen()
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Now we can write an expression such as V1(δ + h)2V0, which sage would
immediately translate to the expanded expression:

V0V1δ
2 + 2V0V1hδ + V0V1h

2.

This expression is much more efficient to work with. For the first expression, a
computer algebra system has to save this as a tree of operations, see figure 2.22.
This tree is cumbersome and relatively slow to work with. By specifying all
variables to be polynomials, sage can save these much more efficiently as a few
simple arrays. For small expressions the difference may be negligible. But for
the giant expressions we are working with, the difference is very significant.

Besides the computational benefit, we also have the ability to easily specify that
V0, . . . , VN are matrices when generating formulae for the constant perturbation
method on coupled systems of equations. We do not specify V0, . . . , VN to be
in a polynomial ring, but in a general free algebra without commutation rules.

1 FreeAlgebra(QQ, ['V0', 'V1', 'V2'])

An expression such as (V1 + V0)2 will now internally be stored as:

V 2
0 + V0V1 + V1V0 + V 2

1 .

Using these polynomial rings, it is straightforward to implement the formulae
from theorem 2.10. The last thing to do is generating the C++-code to compute
the values dq,i from (2.38). For this we generate for each element of the
propagation matrix u(δ), v(δ), u′(δ) and v′(δ) the (Q+ 2) × (N + 1) matrix
Tu, . . . ,Tv′ of formulae for dq,i. For example:

(Tv)1,3 = h · (−0.5V1 + h · (0.5V2 + h · (−0.5V3 + h · (. . . )))) .

As one may expect, this generates a huge file of code. In figure 2.23 we have
provided the cleaned-up13 generated code for (Tu)4,10. This expression is one
example of the over 300 complicated terms needed to generate the propagation
matrix.

To aid the compiler, before generating the code, we implement a crude common
subexpression elimination in sage. Because we are working in a multivariate
polynomial ring (or a free algebra in the case of coupled systems), expressions

13In practice, we have to ensure all scalars have the right type, see section 2.6.1.2. So a
simple fraction like 37

80 has to be implemented as Scalar(37L)/Scalar(80L), here is Scalar
a template type variable.
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1 Tu[4, 10] = (
2 37/80*v1*v1*v2 - 1065/56*v3*v3 - 165/4*v2*v4 - 261/4*v1*v5
3 + 19305/2*v8
4 + h*(-279/80*v1*v2*v2 - 69/16*v1*v1*v3
5 + 945/2*v3*v4 + 567*v2*v5 + 891*v1*v6 - 328185/2*v9
6 + h*(-7/192*v1*v1*v1*v1 + 39/8*v2*v2*v2 + 691/20*v1*v2*v3
7 + 185/8*v1*v1*v4 - 12405/8*v4*v4 - 13251/4*v3*v5
8 - 16731/4*v2*v6 - 26235/4*v1*v7 + 2953665/2*v10
9 + h*(31/96*v1*v1*v1*v2 - 513/10*v2*v2*v3 - 953/16*v1*v3*v3

10 - 1061/8*v1*v2*v4 - 735/8*v1*v1*v5 + 15120*v4*v5
11 + 16956*v3*v6 + 21978*v2*v7 + 137709/4*v1*v8 - 18706545/2*v11
12 + h*(-43/48*v1*v1*v2*v2 - 2/3*v1*v1*v1*v3 + 11427/80*v2*v3*v3
13 + 12517/80*v2*v2*v4 + 1443/4*v1*v3*v4 + 1697/4*v1*v2*v5
14 + 4781/16*v1*v1*v6 - 57765/2*v5*v5 - 60447*v4*v6
15 - 70110*v3*v7 - 92169*v2*v8 - 144144*v1*v9 + 93532725/2*v12
16 + h*(-1/3840*v1*v1*v1*v1*v1 + 31/32*v1*v2*v2*v2
17 + 313/96*v1*v1*v2*v3 + 61/48*v1*v1*v1*v4 - 1809/16*v3*v3*v3
18 - 2943/4*v2*v3*v4 - 7319/16*v1*v4*v4 - 34047/80*v2*v2*v5
19 - 7811/8*v1*v3*v5 - 11823/10*v1*v2*v6 - 67137/80*v1*v1*v7
20 + 192726*v5*v6 + 208521*v4*v7 + 247401*v3*v8
21 + 1311453/4*v2*v9 + 2045043/4*v1*v10 - 392837445/2*v13
22 + h*(1/768*v1*v1*v1*v1*v2
23 - 23/64*v2*v2*v2*v2 - 77/16*v1*v2*v2*v3 - 517/192*v1*v1*v3*v3
24 - 181/32*v1*v1*v2*v4 - 217/96*v1*v1*v1*v5 + 6161/8*v3*v3*v4
25 + 13289/16*v2*v4*v4 + 14079/8*v2*v3*v5 + 8655/4*v1*v4*v5
26 + 21051/20*v2*v2*v6 + 9605/4*v1*v3*v6 + 118279/40*v1*v2*v7
27 + 33663/16*v1*v1*v8 - 558747/2*v6*v6 - 577323*v5*v7
28 - 640332*v4*v8 - 771309*v3*v9 - 1027026*v2*v10
29 - 1594593*v1*v11
30 )))))))

Figure 2.23: The δ-dependent formula for term (Tu)4,10, with Q = 7 and
N = 16 as used by Matslise 3.0. In reality, this is only one of the over 300
terms needed to compute the propagation matrix, with each term just as
complicated as this one.
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which are the product of some Vi’s such as V 2
1 V2 will be common. And, many

of them will be present in more than one formula. We can start the code
generation by extracting some of these products in their own variables. For
example:

1 ...
2 v1_v2 = v1 * v2
3 v1_v1_v2 = v1 * v1_v2
4 ...

In the scalar case, this works wonderfully. All tested compilers are able to
process this generated file without many difficulties. For coupled systems, this
generated file is much harder on the compiler because V0, . . . , VN are no longer
simple scalars. They have become matrices from the Eigen library. Eigen
relies upon inlining and other compiler optimizations to generate the best
possible machine-code. For some compilers (most notably for the Microsoft
Visual Studio compiler) this becomes too much, and they run out of available
system memory. To combat this issue partially, we introduce more temporaries
and split the giant formulae into more manageable simpler expressions.

2.6.1.2 Generalizing the scalar-type

One of the very cool features of the linear algebra library Eigen is that it
does not care what kind of scalars you are working with. All their algorithms
are implemented agnostic of the scalar type. This is achieved by using C++-
templates. For readers unfamiliar with this concept we will provide a very brief
summary of this concept. For a thorough description, see [93, chapter 23].

First, let us take a look at the C-functions to compute the square root of a
floating point number.

1 float sqrtf(float arg);
2 double sqrt(double arg);
3 long double sqrtl(long double arg);

The C-standard has to provide three different functions for three different
floating point types: float is 32 bits wide, double is 64 bits wide and long



2.6. Matslise 3.0 – A new implementation 103

double is commonly14 80 bits wide.

It is cumbersome to have to differentiate between which function to call,
depending on which argument types are used. In C++ this is solved more
elegantly, by allowing function overloads depending on the supplied arguments.
But C++ goes even further, a programmer can build a function for different
types with the same code. For example, the following code implements the
simple operations x2 + y2, for all possible types all at once.

1 template<typename Number>
2 Number squared_norm(Number x, Number y) {
3 Number a = x * x;
4 Number b = y * y;
5 return a + b;
6 }

This function can now be called with different numeric types.

1 squared_norm<int>(3, 4);
2 squared_norm<float>(3.0f, 4.0f);
3 squared_norm<double>(3.0, 4.0);

The library Eigen is implemented by using these templates extensively. This
library provides the Eigen::Matrix<Scalar, rows, cols> type which can
be used to build for example the following matrices.

1 // A 3 by 3 integer matrix
2 Eigen::Matrix<int, 3, 3>

1 // A double-type column vector with a dynamic number of rows
2 Eigen::Matrix<double, Eigen::Dynamic, 1>

1 // A complex 10 by 5 matrix, the real and imaginary part of
2 // each entry is saved in a long double format.
3 Eigen::Matrix<std::complex<long double>, 10, 5>

14The C and C++-standards give surprisingly vague definitions of numeric types. For
example: the int-type is guaranteed to be at least 16 bits wide. The two floating point types
float and double are atypical in the sense that they are guaranteed to be the IEEE-754
binary32 and binary64 formats respectively. For the long double type, the specification is
less strict: “extended precision floating-point type. Matches IEEE-754 binary128 format if
supported, otherwise matches IEEE-754 binary64-extended format if supported, otherwise
matches some non-IEEE-754 extended floating-point format as long as its precision is better
than binary64 and range is at least as good as binary64, otherwise matches IEEE-754
binary64 format.” On x86 systems, this is a 80 bit wide floating point type with a 15 bits
exponent and 64 bits significand.
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1 #include <iostream>
2 #include <boost/format.hpp>
3 #include <boost/math/constants/constants.hpp>
4 #include <boost/multiprecision/float128.hpp>
5 #include <matslise/matslise.h>
6

7 using boost::math::constants::pi;
8 using boost::multiprecision::float128;
9

10 float128 mathieuPotential(float128 x) {
11 return 2 * cos(2 * x);
12 }
13

14 int main() {
15 matslise::Matslise<float128> problem(
16 &mathieuPotential, 0, pi<float128>(), 1e-25q);
17

18 auto boundary = matslise::Y<float128>::Dirichlet();
19 auto eigs = problem.eigenvaluesByIndex(0, 7, boundary);
20 for (auto [i, E]: eigs) {
21 auto error = problem.eigenvalueError(E, boundary, i);
22 std::cout << boost::format(
23 "Eigenvalue %1$d:%2$30.25f (error: %3$.1e)")
24 % i % E % error << std::endl;
25 }
26 return 0;
27 }

1 Eigenvalue 0: -0.1102488169920951699065478 (error: 1.7e-25)
2 Eigenvalue 1: 3.9170247729984711867034169 (error: 1.6e-25)
3 Eigenvalue 2: 9.0477392598093749823749465 (error: 1.9e-25)
4 Eigenvalue 3: 16.0329700814057944092457252 (error: 4.3e-25)
5 Eigenvalue 4: 25.0208408232897663652258825 (error: 4.8e-25)
6 Eigenvalue 5: 36.0142899106282223466625724 (error: 7.7e-25)
7 Eigenvalue 6: 49.0104182494238719005911294 (error: 9.8e-25)

Figure 2.24: A sample program to compute the first eight eigenvalues of the
Mathieu problem from section 2.5.3, in 128 bits wide floating point precision,
and the output generated.
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In our implementation we have also adopted this philosophy by using templates
to allow for any scalar type. This means that Matslise 3.0 is not only able
to solve Sturm–Liouville equations in double-precision (like Matslise 2.0)
but also in the more accurate long double-precision. We even have en-
abled support for a 128 bits floating point numeric type by using Boost’s [17]
boost::multiprecision::float128 type.

Unfortunately, python only has support for the double type. So, if we want
to leverage this higher precision, we will have to write a C++ program. As an
example, in figure 2.24 we provide the code to find the first few eigenvalues of
the Mathieu problem from section 2.5.3 in quadruple precision (128 bit).

2.6.1.3 Memory management

In computer science, a garbage collector is a method to do automatic memory
management. The idea here is to automatically detect if allocated memory (for
an array or object for example) is no longer used. If such memory is found,
this can be returned to the operating system, for later use by our own or
another program. Detecting unused memory is essential to ensure a reliable
working of the system. If one program hoards memory, without returning it to
the operating system, then sooner or later the operating system runs out of
memory and programs need to be unexpectedly aborted.

To avoid this, many interpreted languages (for example python, javascript,
matlab. . . ) have such a garbage collector built in. Even some compiled
languages (such as java or C#) do memory management with a garbage collector.
But this is not the only way to manage memory. The language rust for example,
keeps track of used memory at compile time, with what they call lifetimes.
C and C++ on the other hand, have no memory management built in, these
languages rely on the programmer to clean up after themselves.

In theory, cleaning up after yourself is easy. When you allocate data, just
make sure you deallocate it once you no longer need it. In practice, this view
is too simple. In C++ some memory management is handled automatically
by constructors and destructors. But other, more complicated scenarios, still
have to be handled by the programmer. The situation that caused problems
was the interoperability with python. We had to specify very carefully whose
responsibility it was to clean up objects. Was it an object that was managed
on the C++ side by us, the programmer, or could we let the garbage collector of
python do the work? Luckily, pybind supports std::shared ptr<...>. Using
this solves the responsibility issue in most cases.
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The only problematic case left, is when the lifetime of one object depends
upon another object. Consider for example the following python code, which
computes and stores the sixth eigenfunction of three different Schrödinger
problems.

1 from pyslise import Pyslise
2

3 some_functions = []
4 for q in [1, 10, 100]:
5 problem = Pyslise(lambda x: q*x, 0, 1)
6 i, E, f = problem.eigenpairsByIndex(5, 6, (0, 1))[0]
7 some_functions.append(f)

Here, in the body of the loop, the eigenfunction object f assumes that the
original Pyslise object problem exists. If problem were destroyed, evaluating
the eigenfunction f would trigger undefined behavior. In the best case, this
would crash the program, in the worst case wrong results would be returned.
To ensure problem not to be destroyed too early we have to explicitly mark a
dependence of each of the returned eigenfunctions on the original problem.

In hindsight, these issues and fixes may seem obvious. However, they highlight
some difficulties in getting python and C++ to play nicely together.

2.6.1.4 Automatic testing

Another challenge we want to focus on is an often underappreciated issue in
mathematical software development. When programming, there is an almost
universal truth: all software contains bugs. An art in writing software is
maximizing the chance you catch bugs early. One of the best tools available
for this is automatic tests. These tests should be extremely easy to run and
require no input from the programmer whatsoever. They should just result in
a pass/fail condition. Using a well established test framework makes writing
tests a breeze, and encourages implementing more tests when new functionality
is added or when new edge-cases are discovered.

We have chosen to use catch [39] as a test framework, and we implemented 43
test scenarios with over 2000000 conditions to check. These tests range from
simple unit-tests to ensure the Legendre-polynomials are computed correctly
or that our program is able to evaluate the ηi functions in all floating point
types, to full integration tests where a Sturm–Liouville problem is solved, and
the accuracy is verified. As a summary we provide a small description of some
of these automatic tests.
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• Some simple unit-tests of some auxiliary procedures.

– Least squares approximations of trigonometric functions with shifted
Legendre polynomials.

– The evaluation of the ηi-funtions in many points for all scalar types.

– The domain and the Schrödinger potential after Liouville’s transfor-
mation applied to p(x) = cos(x), q(x) = 0 and w(x) = tan(x) sin(x).

• Some Sturm–Liouville problems with exact known eigenvalues.

– The Schrödinger problem with V (x) = 0 on
[
−π

2 ,
π
2
]

with homoge-
neous Dirichlet boundary conditions. The first 50 eigenfunctions are
compared in many points to the analytical solution.

– The Schrödinger problem with V (x) = x2 on [−15, 15] with homo-
geneous Dirichlet boundary conditions. The first 50 eigenvalues
and the orthonormality of the eigenfunctions are verified, in double,
long double and float128.

– Klotter’s problem [58] with p(x) = 1, q(x) = 3
4x2 and w(x) = 64π2

9x6

on
[ 8

7 , 8
]
.

• Some Schrödinger problems with eigenvalues found in the literature and
with Matslise 2.0.

– The Mathieu problem V (x) = 2 cos(2x) on [0, π]. The first 200 eigen-
values and the orthonormality of the eigenfunctions are checked, in
double, long double and float128. The first and fourth eigenfunc-
tions are compared in different values computed with Matslise 2.0.

– Marletta’s problem: V (x) = 3 x−31
4(x+1)(x+4)2 on [0, 12] with y(0) = 0

and 5y(12) + 8y′(12) = 0.

– The Coffey–Evans problem: V (x) = −2β cos(2x) + β2 sin2(2x) on[
−π

2 ,
π
2
]

with homogeneous Dirichlet boundary conditions and half-
range reduction for β ∈ {20, 25} with all scalar types.

• Sturm–Liouville problems from [91] are checked to their reported values.
For the second and third problem, the reported results in [91] are not as
accurate as we desire, so Matslise 2.0 was used to provide more accurate
values.

– p(x) = 1, q(x) = 0 and w(x) = (1+x)−2 with homogeneous Dirichlet
boundary conditions on [0, 1].
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– p = (1 + x)2, q(x) = x2 − 2 and w(x) = exp(x) on [0, 1] with
homogeneous Dirichlet boundary conditions left and homogeneous
Neumann conditions on the right.

– p(x) = 2 + sin(2πx), q(x) = −10 and w(x) = 1 +
√
x on [0, 1] with

boundary conditions y(0) = 0 and 10y(1) + p(1)y′(1) = 0. The first
three eigenfunctions are also compared to values computed with
Matslise 2.0.

• The following Schrödinger problems with periodic boundary conditions
from [3].

– The first 20 eigenvalues of the periodic problem with potential
V (x) = x2(π − x).

– For V (x) = x2(π − x) a selection of eigenvalues with index up to 40.

All these tests can be easily run during development. They are automatically
run on each code change with the help of GitHub Actions. Here the program is
compiled, and the tests are executed on a clean test system on GitHub’s servers
for Linux, macOS and Windows. This also builds and tests the Python-package.
Working with GitHub Actions for automated testing allows us to quickly detect
code regressions and failing tests on other operating system.

2.7 Future work
In this chapter, we have introduced and improved upon the constant per-
turbation method for Sturm–Liouville problems, and more specifically time-
independent one-dimensional Schrödinger equations. In section 2.3 we started
from the complicated propagation formulae, and complicated them even further
by explicitly keeping the dependence on δ. These even more intimidating
formulae enabled us to evaluate eigenfunctions extremely efficiently, as seen in
the numerical experiments in section 2.5.

Besides this new theoretical advancement, and the efficient implementation
accompanying it (as detailed in section 2.6), we also applied the constant
perturbation method to periodic problems in section 2.4. As far as we have
found in the literature, problems with non-separated boundary conditions were
not yet tackled with CP-methods. Furthermore, implementations that are able
to solve problems with periodic boundary conditions are rare. So, we plan
to publish section 2.4 in a separate article. Regarding ‘future work’, this is a
concrete example.
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In the next chapters we will use the method and the implementation developed
here to solve time-independent two-dimensional Schrödinger problems. Our
advancements in this chapter were invaluable in the developments from the
next chapters.

Since the constant perturbation methods are well-established and thoroughly
researched, it is hard to fundamentally improve them. Many researchers
already advanced this topic. However, we still see some opportunities to apply
constant perturbation in more general Sturm–Liouville problems. One of the
first assumptions we made when introducing the CP-methods was that the
domain Ω = [a, b] is a bounded interval. If one is interested in solving Sturm–
Liouville problems on infinite domains ([0,+∞[ or ]−∞,+∞[ for example),
the domain has to be truncated. For Schrödinger problems where the potential
quickly diverges to +∞, this truncation does not pose a big issue. However, for
problems with potentials such as the hydrogen potential (from section 2.5.5),
eigenvalues close to, but less than, zero are very sensitive to this truncation.
Mitigating this is difficult. If the domain is chosen too small, boundary effects
change the computed eigenvalues. If the domain is too large, selecting the
optimal step size is difficult.

As a possible avenue for future research, we believe that CP-methods can be
used on truly infinite domains, without truncation. Up to now, solutions are
always propagated from the end points of the interval to a matching point
somewhere in the interior. But in principle, we could also propagate solutions
from the middle of the domain to the end points. On an infinite domain there
will not be two endpoints. This does not need to be a problem, as we can
propagate solutions until we find convergence for both the eigenfunction and
its derivative to zero. I suspect that implementing this will be far from trivial.
The program should be able to dynamically add more steps in both directions
if larger eigenvalues are requested.
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Chapter 3

A shooting method for 2D
time-independent
Schrödinger equations

There are many general purpose methods available for solving partial differential
equations. Each method has its own benefits and disadvantages. As a rule of
thumb, one can say that a method that is very general and widely applicable,
will be less efficient or less accurate or both, than a method that is specifically
tuned for the problem at hand. With that in mind, there is a real advantage to
gain when investing time and research into a highly-tuned optimized method
for a specific problem.

In this and the next chapter we will study two-dimensional time-independent
Schrödinger equations

−∇2ψ(x, y) + V (x, y)ψ(x, y) = Eψ(x, y) (3.1)

on the domain Ω = [xmin, xmax] × [ymin, ymax]. We will only consider homo-
geneous Dirichlet boundary conditions, this means ∀(x, y) ∈ ∂Ω : ψ(x, y) = 0.
The function V : R2 → R is called the potential function. This potential,
together with the domain and the boundary conditions, define the Schrödinger
problem. When solving the time-independent Schrödinger equation, one is
searching for values for E for which a function ψ(x, y) exists such that they

111
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together satisfy the Schrödinger problem (3.1). Such a value E is called an
eigenvalue corresponding to the eigenfunction ψ(x, y).

From a functional analysis perspective, the Schrödinger problem can also be
interpreted as finding the eigenvalues and eigenfunctions of the Hamiltonian
H, this is the linear functional operator:

H := −∇2 + V (x, y),

defined on the domain Ω with given boundary conditions.

Theoretically, working within the functional analysis framework is extremely
useful. Many powerful results are available for all kinds of operators on all kinds
of domains. In our case, we are interested in self-adjoint elliptic operators, for
if V (x, y) is bounded and continuous then the Hamiltonian is self-adjoint and
elliptic. Proving this here is non-trivial. Not because it is a particular difficult
proof, in some textbooks this is merely an example of proven theorems, rather
since all proofs require a thoroughly developed functional analysis framework.
As an example of this framework: in the series of books starting with [85], the
authors start with defining functional spaces and provide some basic topological
ideas to finally, after almost 200 pages, define a functional operator. It takes
another 50 pages before they consider the spectrum of such an operator. So, in
these 250 pages they were able to define very rigorously the needed concepts.
Only in the fourth volume [84], all parts of the puzzle are available to prove
the Hamiltonian operator is self-adjoint. This self-adjointness in turn implies
many theorems proven in volume two [83].

Even though numerical methods are able to take a few theoretical shortcuts1,
having a thorough understanding of the theory can be quite instructive. For
now, we will not provide the functional analysis background, or rigorous proofs
for the properties of Hamiltonian operators. However, we will state some useful
theorems specifically for the Schrödinger problem at hand. The theorems
we provide here are all special cases of more general results from functional
analysis, proofs for these can be found in many textbooks, for example [85]
and other books in the series.

But first, let us define a regular Schrödinger problem2 to be equation (3.1)
1For example, if we numerically approximate the integral

∫ b

a
f(x) dx we use our favorite

quadrature rule and input the function f . We are not concerned if f is sufficiently integrable.
We are not concerned that f could be not almost everywhere continuous. The only thing we
need is to be able to evaluate f in the points required by the quadrature rule.

2The definition we provide here is only for two-dimensional problems. Changing the
number of dimensions will not alter the provided theorems.
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defined on a bounded Lipschitz3 domain Ω ⊆ R with linear, real and continuous
boundary conditions and let V (x, y) : Ω → R be continuous (and therefore
bounded) on Ω. With this in hand, we can state analogous theorems as in the
one-dimensional case.

Theorem 3.1. All eigenvalues of a regular Schrödinger problem are real. Corre-
sponding eigenfunctions can always be scaled such that they are real.

This first theorem states that to find solutions, no complex numbers are
necessary. This significantly simplifies the implementation of a method.

Theorem 3.2. The number of eigenvalues of a regular Schrödinger problem
are countable. All eigenvalues have a lower bound and no upper bound. This
implies that these can be written as:

E0 ≤ E1 ≤ E2 ≤ · · · → ∞.

Note that in contrast to theorem 2.2, eigenvalues are no longer guaranteed to
be simple. With this we mean that for the same eigenvalue, multiple linear
independent eigenfunctions can be found. Such eigenvalues are said to be
degenerate. If the corresponding eigenfunction space has dimension 3, for
example, the eigenvalue is said to have multiplicity 3.

The last theorem we provide for now will give some information about the
eigenfunctions.

Theorem 3.3. For two different eigenvalues Em and En, the corresponding
eigenfunctions ψm(x, y) and ψn(x, y) will be orthogonal on Ω.

∫

Ω
ψm(x)ψn(x) dx = 0 if Em ̸= En.

These theorems give a very clear picture about what a solution will look like. But
also what kind of questions we want to be able to handle, for example: “What
is the smallest eigenvalue?”, or “Draw a graph of the first few eigenfunctions.”.
To put these theorems in context we consider the following example.

3.0.1 A first example
As an example we consider the Schrödinger problem on the domain [0, π] ×
[0, π] with homogeneous Dirichlet boundary conditions and zero potential. Its

3Formally, a Lipschitz domain has a Lipschitz continuous boundary. Intuitively, a Lipschitz
domain has a ‘sufficiently regular’ boundary [23].
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Figure 3.1: A 2D and 3D plot of the eigenfunction corresponding to i = 3 and
j = 2 from equation (3.5), the eigenvalue is E3,2 = 13.

equation is given as

−∂2ψ

∂x2 − ∂2ψ

∂y2 = Eψ(x, y). (3.2)

Now we write an eigenfunction ψ(x, y) as a y-dependent linear combination
of the x-dependent functions sin(x), sin(2x), sin(3x), . . . which satisfy the
boundary conditions:

ψ(x, y) =
∞∑

i=1
ci(y) sin(ix). (3.3)

Since {sin(x), sin(2x), . . . } constructs a basis for L2
0(Ω), this is the space of

compactly supported square integrable functions on Ω, all possible eigenfunc-
tions are expressed with equation (3.3). If we plug this into the Schrödinger
equation then we get

∞∑

i=1
i2ci(y) sin(ix) −

∞∑

i=1

d2ci
dy2 sin(ix) =

∞∑

i=1
Eci(y) sin(ix).

Linear combinations of basis functions can only be equal if their coefficients
are equal, thus:

(i2 − E)ci(y) = d2ci
dy2 with ci(0) = ci(π) = 0 for each i ∈ {1, 2, . . . }. (3.4)
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Define j :=
√
E − i2. The ordinary differential equation (3.4) will only have

solutions that satisfy the given boundary conditions if j is a strictly positive
integer, specifically: ci(y) = sin

(√
E − i2y

)
. This implies that all eigenvalues

of (3.2) are
Ei,j = i2 + j2 for all i, j ∈ {1, 2, . . . }

with corresponding eigenfunction

ψi,j = sin(ix) sin(jy). (3.5)

The eigenvalues are summarized in the following table.

0 1,2 3 4,5 . . . 30, 31, 32 . . .
E1,1 E1,2 = E2,1 E2,2 E1,3 = E3,1 . . . E1,7 = E5,5 = E7,1 . . .

2 5 8 10 . . . 50 . . .

Here we see that there are many degenerate eigenvalues, the 30th eigenvalue
50 even has multiplicity three. The 234th eigenvalue with value 325 even has
multiplicity six. With some number theory, one can prove that the multiplicity
of an eigenvalue can be unbounded.

A visualization of the eigenfunctions is found in figure 3.1. Here we have
visualized the surface in a three-dimensional plot on the right. For clarity,
we will use most of the time the two-dimensional representation on the left.
Note that no color-legend is provided in the two-dimensional representation, as
eigenfunctions may always be scaled.

The eigenvalue corresponding to the eigenfunction from figure 3.1 has multiplic-
ity two. Another linear independent eigenfunction can be found by swapping x
and y.

For almost all potential functions V however, the corresponding Schrödinger
equation cannot be solved symbolically. So when one is interested in solutions,
one has to resort to numerical methods. When only the ground state, that
is the lowest eigenvalue, or maybe only few of the lowest eigenvalues are
required, general numerical methods may suffice. Some examples of such
techniques are finite difference based methods, or a finite element analysis.
When higher eigenvalues are required, the eigenfunctions become more and more
oscillatory. For the one-dimensional problem we have seen that general methods
have difficulties with highly oscillatory functions. These same difficulties are
expected for two-dimensional problems. In chapter 4, we will study such a
more general method, and develop our own method.
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This chapter is dedicated to the study and improvement of the method proposed
in [47] by Ixaru. In section 3.1, we will follow [47] and study the method itself.
Later on, in section 3.2 we will highlight some challenges with using this method,
and propose some improvements. Section 3.3 contains the new theory we have
developed to determine the index of an eigenfunction. And lastly, in section 3.4
some numerical experiments are presented.

3.1 Ixaru’s method
The main idea of Ixaru’s method is built on the well-established technique (by,
among others, Titchmarsh [95]) of writing a solution as a linear combination of
well-chosen one-dimensional basis functions bi(x): ψ(x, y) =

∑∞
i=1 bi(x)ci(y). A

disadvantage of this known technique is that many basis functions are necessary
to represent an eigenfunction accurately along the whole of the domain. Ixaru
mitigates this by proposing multiple sets of basis functions, depending on the
position in the domain. More concretely, he suggests splitting the domain into
K different sectors along the y-axis4:

ymin = y0 < y1 < y2 < · · · < yk < · · · < yK−1 < yK = ymax.

This split in sectors is illustrated in figure 3.2.

On each sector k (with domain [xmin, xmax] × [yk−1, yk]), a solution ψ(x, y) will
be approximated as a linear combination of N basis functions:

ψ(x, y) ≈
N∑

i=1
b
(k)
i (x)c(k)

i (y) = b(k)⊺(x) c(k)(y). (3.6)

Ideally, the used basis on sector k should be related to the resulting eigenfunction
on this sector. Of course, the eigenfunction is unknown, so using it is not
an option. In principle, there are many bases to choose from, a Fourier-basis
is possible, or some basis based upon orthogonal polynomials. But, these
well-known choices do not take advantage of the shape of the potential in the
sector. In [47], the author proposes to use the eigenfunctions from the following
one-dimensional Schrödinger problem:

−∂2b
(k)
i

∂x2 + V̄ (k)(x)b(k)
i (x) = λ

(k)
i b

(k)
i (x) (3.7)

4In the original article [47], the domain is split along the x-axis. But for notational
purposes, it is more convenient to split along the y-axis. Analogous for the 3d version of the
method, the split would happen along the z-axis.
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ymin = y0
xmin xmax

sector 1

y1

sector 2

y2

· · ·...

yk−1

sector k

yk

· · ·...

yK−1

sector K

ymax = yK

Figure 3.2: An illustration of the split in sectors along the y-axis for the
domain [xmin, xmax] × [ymin, ymax].

with boundary conditions b(k)
i (xmin) = b

(k)
i (xmax) = 0. The function V̄ (k)(x)

is a constant (in the y-direction) approximation of the potential V on the kth

sector.

Using this basis is extremely promising. The basis functions are oscillatory
for regions where V̄ is small, and have an exponential behavior when V̄ is
large. This same behavior is expected for the two-dimensional eigenfunctions
as well. For a potential function which becomes large, the two-dimensional
eigenfunction is expected to be most present in the regions where V (x, y) is
small. The chosen one-dimensional basis functions b(k)

i (x) express this same
behavior.

In [47], V̄ (k)(x) := V
(
x, yk−1+yk

2

)
is used as the potential of the one-dimen-

sional problem on sector k. We will use this as well, for now. Later, we will
remark that in some cases other choices may be beneficial.

Just like the constant perturbation methods for one-dimensional problems,
this method employs shooting to locate the eigenvalues. To do so, for a fixed
value of E, formulae are needed to propagate solutions from the bottom of the
domain (along y = ymin) upwards, and from the top of the domain (y = ymax)
downwards. So, given a solution at the beginning of sector k expressed in the
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basis b(k)
i : ψ(x, yk−1) =

∑N
i=1 b

(k)
i (x) c(k)

i (yk−1), an expression is constructed
to compute c

(k)
i (yk) at the end of the sector. Substituting (3.6) into (3.1)

using (3.7) gives rise to

−∂2c(k)

∂y2 + V(k)(y)c(k)(y) = Ec(k)(y). (3.8)

In this expression V(k) is an N ×N matrix depending on y:

V(k)
ij (y) =

∫ xmax

xmin

b
(k)
i (x)b(k)

j (x)
(
V (x, y) − V̄ (k)(x)

)
dx+ δijλ

(k)
i . (3.9)

The system of ordinary differential equations given in (3.8) is a coupled system
of Schrödinger equations. For coupled systems, there are implementations of
constant perturbation methods available, LILIX [46] or MatSCS [63] for example.

For the accurate computation of the integral in (3.9) we have developed spe-
cialized formulae. These will be presented later on in section 3.2.3.

To be able to propagate a solution along the whole domain, it is vital to have
an expression to transfer solutions between consecutive sectors. Eigenfunctions
should be continuous and continuously differentiable. To ensure this when
transitioning between sectors, we impose for all values x ∈ [xmin, xmax]:

b(k)⊺(x) c(k)(yk) = b(k+1)⊺(x) c(k+1)(yk)

and b(k)⊺(x) ∂c(k)

∂y
(yk) = b(k+1)⊺(x) ∂c(k+1)

∂y
(yk) .

Multiplying both sides with b(k+1)(x) and integrating along the x-axis yields

c(k+1)(yk) = M(k)c(k)(yk)
∂c(k+1)

∂y
(yk) = M(k) ∂c(k)

∂y
(yk)

with
M(k)

ij =
〈
b
(k+1)
i

∣∣∣b(k)
j

〉
=
∫ xmax

xmin

b
(k+1)
i (x)b(k)

j (x)dx.

Here we assumed each b
(k+1)
i (x) to be normalized ⟨b(k+1)

i |b(k+1)
i ⟩ = 1, or in

matrix notation: ∫ xmax

xmin

b(k+1)b(k+1)⊺ dx = I. (3.10)
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N = 10 N = 100 N = 1000

10−3

10−2

10−1

100

Figure 3.3: Let N be the upper left N ×N block of M, with M the transition
between the bases defined by the Schrödinger problems with potentials V (x) =
(x− 1)2 and V (x) = (x+ 1)2. This graph displays ∥NN⊺ − I∥2 as a function
of N .

Since in the infinite case

c
(k+1)
i =

∞∑

i=0

〈
b
(k+1)
i

∣∣∣b(k)
j

〉
c
(k)
j (3.11)

exactly, this matrix M(k) is orthogonal. However, if the sum is truncated,
then the equality in (3.11) no longer holds and M(k)⊺ no longer reverses this
transformation. Therefore, M(k) is in general no longer orthogonal. As an
extreme example consider the transition matrix M from the basis defined
by −b′′

i + (x − 1)2bi = λibi to the basis defined by −b′′
i + (x + 1)2bi = λibi.

The infinite matrix M is orthogonal, any finite upper left block of M is not
orthogonal. This is demonstrated in figure 3.3. This loss of orthogonality is a
minor inconvenience, inherent to this method.

With these tools available, all that is left is to formalize how the shooting can
be executed. Instead of propagating with a single starting condition (i.e. a
column vector c(1)(ymin)), all possible initial values (for homogeneous Dirichlet
boundary conditions) are propagated at once. Therefore, we propose to start
with:

C(1)(ymin) = 0N×N ∂
∂yC(1)(ymin) = IN×N

and
C(K)(ymax) = 0N×N ∂

∂yC(K) (ymax) = IN×N .
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As we are using a multiple shooting procedure in the y-direction, the propagated
values come together in a matching line y = ym. Since eigenfunctions have to
be continuous and continuously differentiable, a ‘matching’ condition can be
formulated. Let us define Cbottom and C′

bottom to be the values of C(m)(ym)
and ∂

∂yC(m) (ym) respectively when propagated from the bottom of the domain
upwards. Analogous Ctop and C′

top can be defined. Now the value E is an
eigenvalue of the original problem if and only if there exist vectors ubottom and
utop such that

Cbottom · ubottom = Ctop · utop

and C′
bottom · ubottom = C′

top · utop. (3.12)

In [47], Cbottom and Ctop are implicitly assumed to be non-singular. With this,
equations (3.12) can be rearranged. This makes it equivalent with saying: E is
an eigenvalue of (3.1) if and only if the mismatch matrix

Φ(E) := C′
bottomC−1

bottom − C′
topC−1

top (3.13)

has a zero eigenvalue. Each linear independent eigenvector of Φ(E) corre-
sponding to eigenvalue 0 implies a linear independent eigenfunction ψ(x, y) of
the Schrödinger equation. Conversely, each eigenfunction of the Schrödinger
equation corresponding to E will emit a singular vector for (3.13). Therefore,
the geometric multiplicity of the zero eigenvalue of this matrix is the same as
the multiplicity of E as an eigenvalue of (3.1). In the original article no details
are provided about how one should find the values of E for which the matrix
Φ(E) becomes singular. Later, in section 3.2.4, we will present our method for
finding those values. In section 3.3, we will go even further and demonstrate a
technique which allows to determine the index of the eigenvalue in question.

This concludes our overview of the method described by Ixaru in [47]. There
are a few differences between our overview and the method as described in [47].
Most notably, as stated in the beginning, we have swapped the roles of x and
y. To highlight the recursive nature of this method, we have chosen to apply
the split along the y-axis. To use this method for three-dimensional problems,
we split the domain along the z-axis, and for the basis functions on each sector
we solve the two-dimensional Schrödinger problem in the x y-plane. For each
of these two-dimensional problems, we split the domain along the y-axis and
solve some one-dimensional Schrödinger problems along the x-axis.
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3.2 Our improvements
The numerical experiment in [47] makes this method seem promising. However,
we have identified some possibilities where Ixaru’s method can be expanded or
improved. This section follows primarily our work from [9].

We have made four large improvements and present them here in no particular
order. First in section 3.2.1, we make the program able to automatically choose
the optimal sector size. This automatic sector selection allows for a user to
only need to specify the required accuracy of the results. In section 3.2.2, we
construct a formula to compute the inner product of two eigenfunctions. This
formula allows us to normalize eigenfunctions and to construct an orthogonal
basis of the eigenspace for degenerate eigenvalues. Section 3.2.3 is dedicated to
the computation of the integral in equation (3.9). And the last improvement
we present here is a robust way to locate eigenvalues in section 3.2.4. For this
last improvement we have to develop some new theoretical results, which we
will cover in section 3.3.

3.2.1 Automatic optimal sector size
When developing numerical methods (for any problem, not only for differential
equations), it is most user-friendly to ask a user to only specify to which accuracy
results are required. Everything else should be automatic5. In Matslise 3.0,
we have followed Matslise 2.0, which has automatic sector size built in. The
usability of this two-dimensional method improves if we include something
similar.

The same ideas from Matslise can be used here as well. The only minor
difference is the way we compute the error for a given sector. In the one-
dimensional case, the difference between the 16th and 18th order propagation
matrix is used to estimate the error. In Ixaru’s method we are propagating
a coupled system of Schrödinger equations on each sector. This propagation
is implemented with an adaptation of MatSCS [63]. In this adaptation, the
difference between propagating with a 8th order and a 10th order method is
used as an error estimate.

In theory and in practice this works beautifully, but some optimizations are
5For example, an implementation of an adaptive quadrature rule should let the user

specify only the function to integrate and the accuracy required. No extra parameters,
such as the initial number of grid points or the order of the method for example, should be
required. But ideally, a user who is experimenting or wants more control should be able to
specify any of these extra parameters.
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xmin xmax
ymin

ymax

Figure 3.4: A possible sector se-
lection for problem 3.4.3 with
potential V (x, y) = (1 + x2)(1 +
y2). The blue lines indicate sec-
tor boundaries. The red lines vi-
sualize the piecewise approxima-
tion used by Matslise 3.0 for
each of the x-directional prob-
lems.

still possible. The selection algorithm works by guessing an initial sector size s0.
When the error is too large, a smaller sector size s1 is chosen and the process
starts over. One big disadvantage of this method is that when a sector was
computed with an error that is too large, all computations are thrown away
and everything is recomputed. This is quite wasteful when the sector size is
only slightly adjusted. One of the things we can reuse are the basis functions.
Initially these are computed as the solution of

−∂2bi
∂x2 + V (x, ȳ) = λibi,

with ȳ = yk + s0
2 . But if s1

2 ≈ s0
2 then it is maybe not necessary to recompute

these basis functions. In our testing, we have seen that the algorithm is not
very sensitive to when s1

2 is no longer considered close to s0
2 . We have chosen

the heuristic that yk + s1
3 ≤ ȳ ≤ yk + 2s1

3 . Intuitively this means that our
program reuses the basis functions bi as long as the corresponding ȳ is situated
within the middle third of a sector. Another big advantage of not needing to
recompute the basis functions is that the expensive recursive expressions for
the integrals

∫ h
0 bi(δ)bj(δ)δndδ can be reused as well. These expressions will

be calculated in section 3.2.3.

A possible automatic sector selection is visualized in figure 3.4. Here we have run
our implementation on the problem from section (3.4.3). We notice that in the
middle of the domain, where the graph of the potential V (x, y) = (1+x2)(1+y2)
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lies lower and is less steep, the sectors are larger.

3.2.2 Orthonormalization of eigenfunctions
For the one-dimensional case, we know from theory that eigenfunctions corre-
sponding to different eigenvalues are necessarily orthogonal. In theorem 3.3 we
have seen that eigenfunctions for different eigenvalues will always be orthogonal.
But up to now, nothing has been stated about eigenfunctions corresponding
to the same eigenvalue. For degenerate eigenvalues, the eigenspace will be
multidimensional.

Ideally, the eigenfunctions returned by our program should form an orthonormal
basis. For this we need to normalize eigenfunctions, and ensure that the returned
basis of a multidimensional eigenspace is orthogonal. To execute normalization,
the inner product ⟨u|u⟩ :=

∫
Ω u

2 of an eigenfunction u with itself should be
computed. To orthogonalize two linear independent eigenfunctions in the same
eigenspace, a Gram–Schmidt process can be used. For this process, there has
to be a way to compute the inner product ⟨u|v⟩ of two functions u and v in
this eigenspace.

To normalize an eigenfunction or to orthogonalize eigenfunctions, in both cases
the inner product of two functions should be computable. One way would be
to numerically estimate this value with some quadrature rules. In principle this
is a valid approach, but in practice, this is quite computationally expensive.
Therefore in theorem 3.4, we construct specialized formulae to compute these
inner products.

Calculating the inner product on the whole domain at once is difficult due
to the changes in the used basis {b(k)

i } for different sectors. To combat this,
theorem 3.4 is formulated with the assumptions that these b(k)

i (x) are constant
in the y-direction. To compute the inner product of two eigenfunctions on
the whole domain, the theorem can be repeatedly applied on each sector.
The proof of this theorem follows the same idea used for the normalization
of solutions found with a constant perturbation method for one-dimensional
Sturm–Liouville problems.

Theorem 3.4. Let ψa(x, y) and ψb(x, y) be two, not necessarily distinct, real
eigenfunctions of the Schrödinger operator corresponding to the same eigenvalue
E. Denote both eigenfunctions as linear combinations of one-dimensional
orthonormal basis functions with bi(xmin) = bi(xmax) = 0 (as described in
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section 3.1, on a single sector).

ψa(x, y) = b(x)⊺ca(y) =
∑

i

bi(x)ca,i(y),

ψb(x, y) = b(x)⊺cb(y) =
∑

i

bi(x)cb,i(y).

On a rectangular domain [xmin, xmax] × [ymin, ymax] the inner product of these
two functions can be expressed as

⟨ψa|ψb⟩ =
∫ xmax

xmin

∫ ymax

ymin

ψaψb dy dx =
(
∂ca

⊺

∂E
cb

′ − cb
⊺ ∂ca

′

∂E

)∣∣∣∣
y=ymax

y=ymin

,

with ca
′ = dca

dy and cb
′ = dcb

dy .

Proof. By assumption ψa and ψb are solutions of the Schrödinger equation:

−∇2ψa + V ψa = Eψa

−∇2ψb + V ψb = Eψb.

Differentiating the first equation with respect to E and multiplying with ψb
gives

−ψb∇2 ∂ψa
∂E

+ V (x, y)∂ψa
∂E

ψb = E
∂ψa
∂E

ψb + ψaψb.

The second equation can be multiplied with ∂ψa

∂E to result in

−∂ψa
∂E

∇2ψb + V (x, y)ψb
∂ψa
∂E

= Eψb
∂ψa
∂E

.

The difference of these last two expressions can be integrated over the domain
[xmin, xmax]× [ymin, ymax] to obtain an expression for the inner product ⟨ψa|ψb⟩.
For brevity of notation, we omit the integration domain, this is assumed to be
[xmin, xmax] × [ymin, ymax].

∫∫
ψa ψb =

∫∫
∂ψa
∂E

∇2ψb −
∫∫

ψb∇2 ∂ψa
∂E

The right-hand side can be calculated by applying Green’s second identity6

6Let f : Ω → R and g : Ω → R be twice differentiable functions on Ω ⊆ Rd. Green’s
second identity tells us

∫
Ω f∇2g − g∇2fdΩ =

∮
∂Ω (f∇g − g∇f) · dn, with n the normal of

∂Ω.
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=
∮ (

∂ψa
∂E

∇ψb · n − ψb∇
∂ψa
∂E

· n
)

.

This can be written explicitly on the integration domain as

=
∫ xmax

xmin

(
∂ψa
∂E

∂ψb
∂y

− ψb
∂2ψa
∂E∂y

)
dx
∣∣∣∣
y=ymax

y=ymin

+
∫ ymax

ymin

(
∂ψa
∂E

∂ψb
∂x

− ψb
∂2ψa
∂E∂x

)
dy
∣∣∣∣
x=xmax

x=xmin

.

Taking into account that the eigenfunctions ψa and ψb are expressed in terms
of an orthonormal set of basis functions b(x), as in equation (3.10), we can
simplify the expression to

=
(
∂ca

⊺

∂E
cb

′ − cb
⊺ ∂ca

′

∂E

)∣∣∣∣
y=ymax

y=ymin

+
∫ ymax

ymin

(
b⊺ ∂ca

∂E
b′⊺cb − b⊺cbb′⊺ ∂ca

∂E

)
dy
∣∣∣∣
x=xmax

x=xmin

.

Since the basis functions satisfy the Dirichlet boundary conditions7 b(xmin) =
b(xmax) = 0 the last term has to be zero, which proves the theorem.

In this theorem, it is assumed that the basis in which the eigenfunctions are
expanded is constant throughout the whole domain. In our case, this basis
changes between sectors. Therefore, when computing the inner product of two
eigenfunctions on the domain, theorem 3.4 will have to be repeatedly employed
on each sector separately, with ymin = yk−1 and ymax = yk. Summing these
values across all sectors gives the inner product over the whole domain. This
value, in turn, can be used to normalize an eigenfunction or orthogonalize
different eigenfunctions for the same eigenvalue.

3.2.3 Calculation of V(k)(y)
Another improvement we have made can be found in the calculation of the
matrix V(k)(y) from equation (3.9). When one wants to implement the right-
hand side of (3.9) accurately, some considerations have to be made. As the
formula consist of an integral with a relatively complicated integrand, we have

7Note that this proof also works if the basis b is assumed to satisfy homogeneous Robin
boundary conditions.
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to consider in which points this integrand is known. Furthermore, evaluating
more points is non-trivial.

In [47], the author points out that not only the values of the basis functions
are known but also the values of their derivatives. To use this, ideas from [57]
are combined with the treatment of exponential fitting with two frequencies
in [48]. This yielded a procedure close to CENC1 from [52].

In our case, the story is quite different. Because of our improvements to
Matslise, we can improve accuracy even further. In particular, the computa-
tion of b(k)

i (x) is now efficiently possible in arbitrary points. This allows us to
use off-the-shelf adaptive quadrature rules, to ensure accuracy. As this was only
a first test to approximate V(k)(x), we did not use specialized exponentially
fitted methods. When profiling our implementation we found that the time to
execute these quadrature formulae was almost negligible.

So in practice, there was little need to improve even further, with the more
complicated quadrature formulae from [48, 57, 21]. But, as numerical analysts,
we were still curious if some more fundamental improvements were possible.
After all, the eigenfunctions b(k)

i (x) are approximated piecewise by a truncated
series in the step size δ and the special functions η−1, η0, . . . But also, the
function V̄ (k) is already approximated by a sixteenth degree polynomial. The
only ‘wildcard’, so to speak, is the unknown general function V (x, y), for a
fixed value of y. In the middle of the kth sector, this function is approximated
piecewisely. As such, it is reasonable to assume that a piecewise sixteenth
degree polynomial can also be accurately fitted on this function V (x, y), if the
same grid as for V̄ (k) is used.

More formal, let us split the interval [xmin, xmax] into the same partition that
Matslise 3.0 used for the piecewise approximation xmin = x0, x1, . . . , xK =
xmax. For a fixed value of y on the section [xl−1, xl], the potential V (x, y) can
be approximated by a sixteenth order polynomial, just like V̄ (k)(x). We thus
approximate V (x, y) − V̄ (k)(x) on [xl−1, xl] by a polynomial ql(x). This means
that to compute (3.9), it is sufficient to be able to evaluate

∫ h

0
b
(k)
i (xl−1 + δ)b(k)

j (xl−1 + δ)δndδ (3.14)

with h := xl − xl−1.

In chapter 2, we have provided expressions for b(k)
i (xl−1 + δ) as a function of δ
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and Zi := δ2
(
V̄

(k)
l,0 − λ

(k)
i

)
:

b
(k)
i (xl−1 + δ) =

∑

m=−1
cm(δ)ηm(Zi).

In this expression, cm(δ) are known polynomials in δ.

Thus, to reconstruct the value of (3.14), it is sufficient to compute the value of

Ink,l :=
∫ h

0
ηk(Zi)ηl(Zj)δndδ (3.15)

for all appropriate k, l and n. In the next section, we will develop recursive
formulae for this expression.

3.2.3.1 Weighted integral of product of two η-functions

Here, the goal is to develop an expression to compute (3.15). Due to the
recursive property of η-functions

ηk(Z) = 1
Z

(ηk−2(Z) − (2k − 1)ηk−1(Z)) ,

if the first values of (3.15) are known for all n, the others follow. So we calculate
four integrals symbolically (denote θi := V̄

(m)
0 − λi and Ẑi = h2θi):

F 0 := I0
−1,−1 = h

θi − θj

(
θiη0(Ẑi)η−1(Ẑj) − θjη−1(Ẑi)η0(Ẑj)

)
,

G0 := I1
−1,0 = −1

θi − θj

(
η−1(Ẑi)η−1(Ẑj) − Ẑiη0(Ẑi)η0(Ẑj) − 1

)
,

H0 := I1
0,−1 = 1

θi − θj

(
η−1(Ẑi)η−1(Ẑj) − Ẑjη0(Ẑi)η0(Ẑj) − 1

)
,

J0 := I2
0,0 = h

θi − θj

(
η−1(Ẑi)η0(Ẑj) − η0(Ẑi)η−1(Ẑj)

)
.

In the case where i = j, these values are given as

F 0 := I0
−1,−1 = h

2

(
η−1(Ẑi)η0(Ẑi) + 1

)
,

G0 := I1
−1,0 = h2

2Ẑi

(
η−1(Ẑi)2 − 1

)
,

H0 := I1
0,−1 = G0,

J0 := I2
0,0 = h3

2Ẑi

(
η−1(Ẑi)η0(Ẑi) − 1

)
.
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We next show that it is possible, by partial integration, to compute formulae
for Fn := In−1,−1 and Jn := In+2

0,0 using values for Gn−1 := In−1,0 and Hn−1 :=
In0,−1. Analogous, formulae for Gn and Hn use the values of Fn−1 and Jn−1.
Let us consider the case of Fn. Differentiating both sides of

∫ h

0
η−1(Zi)η−1(Zj)dδ = h

θi − θj

(
θiη0(Ẑi)η−1(Ẑj) − θjη−1(Ẑi)η0(Ẑj)

)
,

with respect to h, and replacing h by δ, gives:

η−1(Zi)η−1(Zj) = ∂

∂δ

(
δ

θi − θj
(θiη0(Zi)η−1(Zj) − θjη−1(Zi)η0(Zj))

)
.

Then, the partial integration formula

∫ h

0
f ′(δ)g(δ)dδ = f(h)g(h) − f(0)g(0) −

∫ h

0
f(δ)g′(δ)dδ

is applied to g(δ) = δn and f ′(δ) = η−1(Zi)η−1(Zj). Since

f(δ) = δ

θi − θj
(θiη0(Zi)η−1(Zj) − θjη−1(Zi)η0(Zj)) ,

we obtain

Fn =
∫ h

0
η−1(Zi)η−1(Zj)δndδ

= hnF 0 − n

θi − θj

∫ h

0
δn (θiη0(Zi)η−1(Zj) − θjη−1(Zi)η0(Zj)) dδ

= hnF 0 − n

θi − θj

(
θiH

n−1 − θjG
n−1) .
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With similar computations we obtain the following formulae

Gn =
∫ h

0
η−1(Zi)η0(Zj)δn+1dδ

= hnG0 + n

θi − θj

∫ h

0
δn−1 (η−1(Zi)η−1(Zj) − θiδ

2η0(Zi)η0(Zj) − 1
)

dδ

= hnG0 + n

θi − θj

(
Fn−1 − θiJ

n−1)− hn

θi − θj

Hn = hnH0 − n

θi − θj

(
Fn−1 − θjJ

n−1)+ hn

θi − θj

Jn =
∫ h

0
η0(Zi)η0(Zj)δn+2dδ

= hnJ0 − n

θi − θj

∫ h

0
δn (η−1(Zi)η0(Zj) − η0(Zi)η−1(Zj)) dδ

= hnJ0 − n

θi − θj

(
Gn−1 −Hn−1) .

Calculating these values for increasing n can be a numerically unstable process.
A more stable algorithm is made by reversing the recursion with decreasing
values of n. This gives rise to the recursion:

Fn−1 = 1
n

(x1θi + x2θj + hn)

Jn−1 = 1
n

(x1 + x2)

Gn−1 = 1
n

(y1 + θiy2)

Hn−1 = 1
n

(y1 + θjy2)

with:

x1 = H0hn −Hn

x2 = G0hn −Gn

y1 = F 0hn − Fn

y2 = J0hn − Jn.

In practice, we have found reliable convergence when starting this recursion
with n sufficiently large and Fn, Gn, Hn and Jn replaced by 0.
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Lastly, the other values for Ink,l, with k, l > 0, can be computed via the recursion
relation between the η-functions:

Ink,l = 1
θi

(
In−2
k−2,l − (2k − 1)In−2

k−1,l

)

Ink,l = 1
θj

(
In−2
k,l−2 − (2l − 1)In−2

k,l−1

)
.

In summary, the formulae developed here can now be used to determine values
for (3.15), for all n, k and l.

3.2.3.2 Calculation of M(k)

In the previous section, we have obtained formulae to compute (3.14). In
principle, these formulae could also be extended to compute overlap integrals

M(k)
ij =

∫ xmax

xmin

b
(k+1)
i (x)b(k)

j (x)dx,

but there are a few hurdles. First, we would like to use the automatic sector
selection algorithm in Matslise, as this has the big advantage of ensuring the
requested accuracy. Using this automatic sector selection has the consequence
of choosing a different partition along the x-axis for different sectors in the
y-direction. However, since M(k) requires basis functions on two different
sectors, it would be very cumbersome to construct appropriate formulae.

Second, we noted that these recursive expressions for V(k)(y) are quite expensive
to compute. For V(k)(y), this cost can be justified by also reducing function
evaluations of the potential V (x, y).

In the case of M(k), a similar justification is hard to find because in Matslise 3.0
it is now possible to evaluate b(k+1)

i (x) and b
(k)
j (x) very cheaply in arbitrary

points.

For these reasons we have opted to use classical quadrature rules to compute∫ xmax
xmin

b
(k+1)
i (x)b(k)

j (x)dx. To ensure sufficiently accurate integration results,
the 31-points adaptive Gauss–Kronrod formulae are used. These have a proven
track record [77].

3.2.4 Locating eigenvalues
In section 3.1, we have studied a method to determine, for a given value E,
whether it is an eigenvalue. This E will only be an eigenvalue if the matrix
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from equation (3.13) becomes singular. In [47], it is suggested to keep track
of the smallest (in modulus) eigenvalue of Ψ(E). No information is provided
about how one can find such values for E.

In the literature, many methods to find roots of functions are available. In
introductory textbooks to scientific computing (e.g. [37, Chapter 5]), the most
well-known methods are presented. One of the easiest to implement is the
method of interval bisection. In this method the root of a scalar function
f : R → R is determined by repeatedly halving a search interval. The position
of the root can be tracked by ensuring the function f has different signs on
the end points of the search interval. This requires that an initial guess for the
interval already contains one root. But also, notice that the method will not
work when the initial search interval contains two roots, or a root with higher
multiplicity for example.

Another well-known technique is Newton’s method. Here, the root of a scalar
function f can be approximated by iterating the following scheme:

xn+1 = xn − f(xn)
f ′(xn) .

For single roots, this method has a faster rate of convergence. Choosing initial
values is also easier, because a value x0 should be chosen only to be ‘sufficiently
close’ to a true root. One of the biggest drawbacks of this method is that the
derivative of f(x) should be available. For complicated functions, this can
be difficult. Extensions of this method exist for which the derivative is not
necessary, the secant method for example.

In all these well-known methods, the problem is that they only can be used to
find a single root, not all roots. Furthermore, they only work on scalar function
R → R or vector-functions Rn → Rn for which roots are uniquely defined. In
our case, we are interested in the situation when any of the eigenvalues of (3.13)
becomes zero. This does not map directly on any of these classical root-finding
algorithms.

To combat these issues with the classical algorithms, we propose a small
modification to Newton’s method. Suppose an inaccurate approximation E0
of an eigenvalue of the Schrödinger equation (3.1) is given. Starting from this
approximation, we want a fast converging algorithm to find the true eigenvalue
E. As stated earlier, E is an eigenvalue if and only if it is a value such that
the mismatch matrix Φ(E), as defined by (3.13), is singular.

Φ(E) := C′
bottomC−1

bottom − C′
topC−1

top.
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In other words, the matrix Φ(E) has to have a zero eigenvalue.

In Newton’s method, the derivative of the function in question should be
available. Fortunately, in [46] and in [65], procedures are available to compute
the derivative of solutions with respect to E. In our case, this means that the
matrices

∂Cbottom
∂E

,
∂C′

bottom
∂E

,
∂Ctop
∂E

and
∂C′

top
∂E

are available. This allows us to also compute the derivative of Φ itself. First
note, for any invertible matrix A that

(
A−1)′ = −A−1A′A−1, since 0 =(

AA−1)′ = A′A−1 + A
(
A−1)′. It then follows that

∂Φ
∂E

=
(
∂C′

bottom
∂E

− C′
bottomC−1

bottom
∂Cbottom

∂E

)
C−1

bottom

−
(
∂C′

top
∂E

− C′
topC−1

top
∂Ctop
∂E

)
C−1

top.

Since we want to find roots within the eigenvalues of Φ, it is also valuable to
be able to compute the derivative of an eigenvalue with respect to E. The
derivatives of the eigenvalues of a matrix-function are already known for a long
time [60].

Theorem 3.5 (Lancaster 1964). Let A(x) be a matrix function C → Cn×n such
that each coefficient is continuously differentiable with respect to x in the point
x0. Furthermore, assume A(x0) to be diagonalizable8.

Let λ be a simple eigenvalue of A(x0) with left and right eigenvectors v, u
respectively. It now holds that

(
dλ
dx

)

x=x0

= 1
v⊺u

(
v⊺ dA

dx u
)

x=x0

,

where dA
dx is the matrix with, as coefficients, the derivatives of the corresponding

coefficients of A(x) with respect to x.

8In [60], it is noted that different, less stringent, assumptions may be made on the
structure of A(x): “This is equivalent to saying that every eigenvalue of [A(x0)] has only
linear elementary divisors; or that [A(x0)] is diagonable, non-derogatory, non-defective, or
similar to a diagonal matrix. This assumption could be replaced by the less restrictive
condition that only the eigenvalue [λ] should have linear elementary divisors.”
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Proof. As u and v are right, respectively left, eigenvectors corresponding to
the eigenvalue λ, it follows that:

v⊺A(x0)u = λv⊺u. (3.16)

Because all involved variables are dependent on x, and we will only take the
value (or the value of the derivative) in x0, we will, to ease notation, omit this
x dependency and implied evaluation in the point x0. Furthermore, we will
denote the derivative with respect to x with a prime “′”. This allows us to
write down the derivative of both sides of (3.16). These derivatives can further
be simplified by using the product rule when applied to matrix multiplications:

(v⊺A(x0)u)′ = (λv⊺u)′

=⇒ v⊺′Au + v⊺A′u + v⊺Au′ = λ′v⊺u + λv⊺′u + λv⊺u′.

Using that u and v are eigenvectors (Au = λu and v⊺A = λv⊺), gives us the
required expression:

v⊺A′u = λ′v⊺u

=⇒ λ′ = v⊺A′u
v⊺u .

Here we assumed v⊺u ̸= 0. This concern is addressed in the appendix of [60]:
by considering the subspaces of left and right eigenvectors corresponding to λ,
it can be proven that v⊺u never vanishes.

Some care should be taken when two eigenvalues coincide. In [60], this is
handled by considering the left and right eigenvector space corresponding to
the multiple eigenvalue. But since we are dealing with only numerical results
this (almost) never happens. Theorem 3.5 applied to Φ(E) gives

∂λ

∂E
= 1

v⊺uv⊺ ∂Φ
∂E

u,

with left and right eigenvectors v and u respectively corresponding to the
eigenvalue λ.

With the values for all these derivatives, all tools are available to formulate our
proposed modified Newton’s scheme. To simplify the notation, we introduce
the matrix-operator σ which returns the spectrum of a matrix. This operator
is defined on the n× n-matrix A as

σ(A) := {λ ∈ C | ∃u ∈ Cn \ {0} : Au = λu} .
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0

Figure 3.5: Two eigenvalues of Φ(E) are plotted. Whichever is preferred by
f(E) from (3.17) is highlighted.

Now, we define the scalar function f(E) : R → R as

f(E) = arg min
λ∈σ(Φ(E))∩R

∣∣∣∣
λ

∂λ/∂E

∣∣∣∣ . (3.17)

On this function f(E), the classical Newton’s method can be used.

In figure 3.5, the idea of f(E) from (3.17) is demonstrated. Assume the blue
line and red line each represents an eigenvalue of Φ(E). The regions where
this eigenvalue is chosen by f(E) are indicated. The idea is that f selects the
function with the closest possible root in a linear approximation.

3.2.4.1 A numerical example

To provide some intuition about the eigenvalues λ of the mismatch matrix
Φ(E), we will analyze a numerical example. Consider the two-dimensional
time-independent Schrödinger equation with potential function

V (x, y) = (1 + x2)(1 + y2) (3.18)

on the domain [−5.5; 5.5] × [−5.5; 5.5] with homogeneous Dirichlet boundary
conditions. This problem is also the numerical example from Ixaru’s work [47].

Throughout this research, one of the first graphs we studied can be found
in figure 3.6. Here all eigenvalues of the mismatch matrix Φ(E) are plotted.
For each value of E in this problem, Φ(E) has N real eigenvalues, with N

number of functions b(k)
i (x) on each sector, as described in section 3.1. Upon
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Figure 3.6: Each of the eigenvalues λ of the mismatch matrix Φ(E) of the
Schrödinger problem (3.18) with N = 12 as a function of E. The true eigenval-
ues of this problem are indicated with E0, E1, . . . The lines are colored and
continued to aid in the clarity of this illustration. But, do notice that this is
only a best guess approximation.
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Figure 3.7: These are zoomed in views of the graph from 3.6. Some surprising
behavior of the eigenvalues of Φ(E) are visible.
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λ∈σ(Φ(E))∩R
|λ|

arg min
λ∈σ(Φ(E))∩R

∣∣∣∣
λ

∂λ/∂E

∣∣∣∣
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Figure 3.8: The function (3.17) for problem (3.18) is plotted in blue. In red,
we have indicated the smallest real eigenvalue (in absolute value) of Φ(E). In
regions where the red curve seems missing, it coincides with the blue curve. At
first glance, the striking vertical lines may be assumed to be asymptotes. This
is not the case: in these regions, f(E) changes rapidly.

seeing this graph, it is easy to say that one can ‘follow’ the trajectory of a
single eigenvalue as E changes. In reality, this is not easy at all. For example,
sometimes two eigenvalue curves intersect, other times they barely avoid each
other, and seemingly switch which curve they follow. In figure 3.7, this strange
behavior is visible.

These difficulties and nuances are hidden away behind the colors and seemingly
continuous lines present in figure 3.6. Practically, this graph is generated from
the eigenvalues (and their derivatives) of Φ(E) for 10000 values of E. Two
eigenvalues λ(i)

j , λ(i+1)
k for two adjacent values Ei and Ei+1, are determined to

correspond to the same curve (and thus get the same color) if

λ
(i+1)
k − λ

(i)
j

Ei+1 − Ei
≈ dλ(i+1)

k

dE

holds within a given accuracy.

In figure 3.8, the graph of the function f(E) from equation (3.17) is plotted.
Comparing this with figure 3.6, allows us to get an intuitive understanding of our
application of Newton’s method. But as can be seen in figure 3.8, this method
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is not perfect. For example, the region in which eigenvalue E5 can be detected
is relatively small. If the more straightforward f(x) = arg minλ∈σ(Φ(E))∩R |λ|
was used, this region would be extremely tiny, as can be seen on figure 3.8. But
still, even with (3.17), numerically it would be very unlikely to stumble upon
this region, to detect that an eigenvalue was missing. For this reason we have
developed a robust way to determine the number of eigenvalues less than the
value E. This allows us to detect these missing values, and locate them. In the
next section (3.3), we will develop some new theory to locate all eigenvalues
reliably.

3.3 Determining the index of eigenvalues
This section is based upon as yet unpublished work, in collaboration with
professor Hans Vernaeve.

In mathematical physics there are many problems dependent on, or consisting
of, determining eigenvalues of a linear elliptic operator on a given domain with
homogeneous Dirichlet boundary conditions. Examples include the Schrödinger
equation, the wave equation, and the linear theory of elasticity to name a
few. There are many methods, analytical as well as numerical, to solve for
or to approximate these eigenvalues, e.g. shooting methods [51, 47], finite
difference methods [102], methods for finding the lowest eigenvalues [18], or
even the methods discussed in chapters 2, 3 and 4. There even exist (numerical)
methods that are able to find eigenvalues in the neighborhood of a given value
E without the need to compute all lower eigenvalues. For this last group of
methods we have developed a theorem to count eigenvalues.

Up until now, there was no method, that the authors know of, to reliably
determine the exact number of eigenvalues lower than a given value E for
multidimensional problems. The best known result is already almost a century
old: Courant’s nodal domain theorem [22, vol I, chapter VI, paragraph 2,
theorem 2]9. This theorem states that, for an eigenfunction u with corre-
sponding eigenvalue λ, there are at least as many eigenvalues (counted with
multiplicity) less than λ, as the number of nodal domains of u minus one. A
nodal domain is defined as a largest connected set of the domain on which the
eigenfunction u does not become zero. The nodal domain theorem gives, when
an eigenvalue λ with corresponding eigenfunction is known, a lower bound on
the number of eigenvalues less than λ. However, only for restricted classes

9A more modern formulation of this theorem can be found in for example [12, theorem
1.1].
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λ0 ≈ 2.00 λ1,2 ≈ 4.00 λ3,4,5 ≈ 6.00

u1,1

1
u1,2

2
u2,2

4

u2,1

2
u1,3

3

u3,1

3

Table 3.1: Density plots (see also figure 3.9) of the first six eigenfunctions of
the quantum harmonic oscillator, −∇2u + (x2 + y2)u = λu, on the square
[−5; 5] × [−5; 5], with homogeneous Dirichlet boundary conditions. For each
eigenfunction, the number of nodal domains is indicated. The eigenfunctions for
which Courant’s nodal domain theorem is strict, are highlighted in bold. These
four eigenfunctions presented here are the only ones for which this strictness
holds, for the harmonic oscillator.
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Figure 3.9: A three-dimensional graph of the eigenfunction u3,1 of the quantum
harmonic oscillator −∇2u+ (x2 + y2)u = λu, on the square [−5; 5] × [−5; 5],
with homogeneous Dirichlet boundary conditions. This graph illustrates how
the density plots from table 3.1 and figure 3.19 should be interpreted.

of one-dimensional problems, such as regular Sturm–Liouville problems with
linear separated boundary conditions on bounded domains, this value is exact.
In table 3.1, this fact is demonstrated by showing that the number of nodal
domains of an eigenfunction does not lead to an exact estimate for the index
of the corresponding eigenvalue.

A practical problem in applying Courant’s nodal domain theorem is that
numerically, it is quite difficult to reliably determine the number of nodal
domains of a function. This motivated us to formulate theorem 3.9.

To develop the theoretical framework for this theorem, some definitions are
needed. These will simplify the notation and proof of our results.

Definition 3.6. The one-dimensional cross-section lΩ,i(x) of a Lipschitz domain
Ω along the ith dimension through x is defined as:

lΩ,i(x) := {y ∈ Ω | ∀j ∈ {1, . . . , n} \ {i} : xj = yj} .

Note that, when Ω is bounded, lΩ,i(x) is the union of collinear line segments.
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As such, the following definition represents the maximal sum of the lengths of
each of these segments.

Definition 3.7. The directional diameter, dirdiami(Ω), of a bounded Lipschitz
domain Ω ⊆ Rn is defined as:

dirdiami(Ω) := sup
x∈Ω

∫ ∞

−∞
IΩ(x1, . . . ,xi−1, t,xi+1, . . . ,xn) dt.

Here IΩ(x) is defined as 1 if x ∈ Ω and zero otherwise.

In theorem 3.10, we will be able to identify each eigenvalue by using a continuous
sequence of domains Ωϵ. For this sequence of domains, it should hold that
if ϵ → 0, the domains should become unboundedly small. The notion of the
directional diameter allows us to quantify this.

In figures 3.10 and 3.11, two examples of series of domains are given. Both of
these sets of domains are applicable for theorem 3.10. We would like to note
that the domain from figure 3.11 is particularly valuable for [47, 8].

The next section will be dedicated to proving this theorem. In the last section,
we will provide some examples of and motivation for our work.

3.3.1 The main theorem
Throughout this section, the L2-norm ∥ · ∥L2(Ω) and Sobolev norm ∥ · ∥Hk(Ω)
are being used. For clarity, we will provide the necessary definitions. For a
more thorough discussion of these norms and their properties, many texts are
available, for example [1].

Let L2(Ω) be the space of functions u : Ω → R such that the norm

∥u∥L2(Ω) :=
(∫

Ω
|u|2
) 1

2

exists and is finite.

The Sobolev space Hk(Ω) = W k,2(Ω) is the space of all functions u ∈ L2(Ω)
such that, for the multi-index α with order |α| at most k, each weak partial
derivative Dαu of u is a function in L2(Ω). The Sobolev norm of u is defined
as:

∥u∥Hk(Ω) :=


∑

|α|≤k

∫

Ω
|Dαu|2




1
2

.
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Ω1 Ω0.75 Ω0.5 Ω0.25

Figure 3.10: An example of a sequence of domains Ωϵ that satisfy the necessary
conditions for theorem 3.10: the domains are nested, all domains are Lipschitz,
and the horizontal as well as the vertical directional diameter converge to zero
for ϵ → 0+.

Ω1 Ω0.75 Ω0.5 Ω0.25

Figure 3.11: Another example of a sequence of domains Ωϵ that also satisfy the
necessary conditions for theorem 3.10. Note that these conditions only require
that any directional diameter converges to zero. In this example, the horizontal
directional diameter does not converge to zero: limϵ→0+ dirdiam1(Ωϵ) ̸= 0. The
vertical directional diameter does vanish: limϵ→0+ dirdiam2(Ωϵ) = 0.

The function space C∞(Ω) consists of all infinitely differentiable functions
defined on Ω, and C∞

0 (Ω) consists of all infinitely differentiable functions f
defined on Ω such that f(x) = 0 for all x ∈ ∂Ω.

The subspace Hk
0 (Ω) of Hk(Ω) is the closure of C∞

0 (Ω) in Hk(Ω).

Before proving the main theorem of this section, we provide a kind of Fried-
richs’s inequality to estimate a lower bound for ∥u∥Hk(Ω) in terms of ∥u∥L2(Ω),
and the diameter10 and any directional diameter of Ω.

Lemma 3.8. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary, and

10The diameter of a domain Ω is defined as diam Ω := supx,y∈Ω ∥x − y∥2.
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k ∈ N+. For each u ∈ Hk
0 (Ω), and any j ≤ n

∥u∥L2(Ω) ≤
√

diam(Ω) dirdiamj(Ω)∥u∥Hk(Ω). (3.19)

Proof. For ease of notation, we will assume j = 1. Note that this proof is
equally valid for any other j. Assume also u ∈ C∞

0 (Ω) ∩ Hk
0 (Ω). Because of

the homogeneous Dirichlet boundary conditions, the fundamental theorem of
calculus11 can be used to estimate |u(x)|2 for each x = (x1, . . . , xn) ∈ Ω

|u(x)|2 =
∣∣∣∣
∫ x1

−∞

∂u

∂x1
(t, x2, . . . , xn) IΩ(t, x2, . . . , xn)dt

∣∣∣∣
2

.

In this formula, and throughout the proof, we formally pose that u(x) ≡ 0 for
x /∈ Ω. Note that the fundamental theorem of calculus is applicable because u
is compactly supported and in C1(Ω).

Applying the Cauchy–Schwarz inequality provides some simplifications. Ex-
tending the integration domain removes the dependency on x1.

|u(x)|2 ≤
∫ x1

−∞
IΩ(t, x2, . . . , xn)dt

∫ x1

−∞

∣∣∣∣
∂u

∂x1
(t, x2, . . . , xn)

∣∣∣∣
2

dt

≤ dirdiam1(Ω)
∫ b

a

∣∣∣∣
∂u

∂x1
(t, x2, . . . , xn)

∣∣∣∣
2

dt

with a = infx∈Ω{u1 | u ∈ lΩ,1(x)} and b = supx∈Ω{u1 | u ∈ lΩ,1(x)}. In-
tegrating both sides over Ω, applying Fubini’s theorem12, and noting that
b− a ≤ diam(Ω), yields the required expression for u ∈ C∞

0 (Ω).

∥u∥2
L2(Ω) ≤ dirdiam1(Ω)

∫

Ω

∫ b

a

∣∣∣∣
∂u

∂x1
(t, x2, . . . , xn)

∣∣∣∣
2

dtdx

= dirdiam1(Ω) (b− a)
∫

Ω

∣∣∣∣
∂u

∂x1
(x)
∣∣∣∣
2

dx

≤ dirdiam1(Ω) diam(Ω) ∥u∥2
Hk(Ω).

11The fundamental theorem of calculus states that if f : R → R is a continuous and
differentiable function with f ′(x) integrable then

∫ b

a

f ′(x) dx = f(b) − f(a).

12Fubini’s theorem allows (under some easily checked conditions) to reorder the integration
order in multidimensional integrals.
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To prove this for each u ∈ Hk
0 (Ω), we only have to note that C∞

0 (Ω) is Hk(Ω)-
dense in Hk

0 (Ω). Now u ∈ Hk
0 (Ω) can be written as u = limi→+∞ ui with

ui ∈ C∞
0 (Ω). This implies that

∥u∥2
L2(Ω) ≤ dirdiam1(Ω) diam(Ω) ∥u∥2

Hk(Ω),

for each u ∈ Hk
0 (Ω).

Now we are able to prove lemma 3.9. This prepares the main result of this
section: theorem 3.10.

Lemma 3.9. Let {Ωϵ ⊆ Rn | ∀ϵ ∈ ]0, 1]} be a continuous family of diffeomorphic
bounded Lipschitz domains, such that a < b =⇒ Ωa ⊊ Ωb, and

∃j ∈ {1, . . . , n} : lim
ϵ→0+

dirdiamj(Ωϵ) = 0.

Let L be a linear self-adjoint uniformly elliptic operator, defined on Ω1. Define
λϵ,i as the ith eigenvalue of L limited to Ωϵ with homogeneous Dirichlet boundary
conditions. Then for each i ∈ N, the values λϵ,i as functions of ϵ

• are continuous,

• are strictly decreasing,

• and are unbounded for ϵ → 0+.

Proof. Already in 1924, Courant and Hilbert [22, vol I. chapter V. paragraph
13] noted the continuity of the spectrum under perturbations of the elliptic
operator. Hale described (e.g. [36]) how to translate regular perturbations
in the domain to perturbations in the operator. Our set of diffeomorphic
domains satisfies the necessary assumptions formulated by Hale, so continuity
is guaranteed.

That λϵ,i is a decreasing function of ϵ can be shown by application of [22, vol I,
chapter VI, paragraph 2, theorem 3] “Under the boundary condition u = 0 the
nth eigenvalue for a domain G never exceeds the nth eigenvalue for a subdomain
of G”. The strictness is addressed in a footnote by this theorem: ”In fact, it is
always smaller when we are dealing with a proper subdomain.”.

To prove that λϵ,i grows unboundedly, we start with G̊arding’s inequality [86,
section 9.2.3]. It says that there exist C1 and C2 such that for all u ∈ Hk

0 (Ωϵ):

⟨Lu|u⟩L2(Ωϵ)

∥u∥2
L2(Ωϵ)

+ C1 ≥ C2
∥u∥2

Hk(Ωϵ)

∥u∥2
L2(Ωϵ)

. (3.20)
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Figure 3.12: This graph displays all eigenvalues less than 15 for the two-
dimensional Schrödinger problems −∇2ψ + (1 + x2)(1 + y2)ψ = Eψ on the
rectangle [−5.5; 5.5] × [−5.5; ymax] with homogeneous Dirichlet boundary con-
ditions.

Note that the same C1 and C2 as for Ω1 will also work for Ωϵ. Lemma 3.8
provides an estimate for the right-hand side of (3.20), which, in turn, provides
an estimate for the operator L:

⟨Lu|u⟩L2(Ωϵ)

∥u∥2
L2(Ωϵ)

≥ C3√
dirdiamj(Ωϵ)

− C1,

for a constant C3. By assumption the right-hand side is unbounded for ϵ → 0.
Substituting the eigenfunction uϵ,i, corresponding to the eigenvalue λϵ,i, into
the left-hand side yields that λϵ,i has to be unbounded as well.

As an example, the spectrum of a Schrödinger operator is plotted as a function
of the nested sequence of domains [−5.5; 5.5] × [−5.5; ymax] in figure 3.12. Each
curve corresponds to an eigenvalue. The figure suggests that all of these lines
are continuous, decreasing, and unbounded for ymax → −5.5+, in accordance
with lemma 3.9. A horizontal line for a fixed value E will intersect each curve
corresponding to a lower eigenvalue on the whole domain. This number of
intersections thus gives the number of eigenvalues lower than this given value
E. If E itself is an eigenvalue, then we have also found its index.
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The graph from figure 3.12 and the notion of a horizontal line with fixed value
of E, give rise to following theorem.

Theorem 3.10. Let L be a linear self-adjoint uniformly elliptic operator on
a bounded Lipschitz domain Ω1 ⊆ Rn with homogeneous Dirichlet boundary
conditions. Following [36], define a topology on all domains Ω which are Ck-
diffeomorphic to Ω1. Assume a continuous family of such Ck-diffeomorphic
domains Ωϵ for ϵ ∈ ]0, 1] is given such that Ωa ⊆ Ωb if a < b and ∃j ∈
{1, . . . , n} : limϵ→0+ dirdiamj(Ωϵ) = 0.

For a given value E, the number of eigenvalues of L on Ω1 less than or equal to
E is exactly the same as the number of domains Ωϵ on which E is an eigenvalue
of L limited to Ωϵ with homogeneous Dirichlet boundary conditions. Domains
on which E is an eigenvalue with multiplicity d are counted d times.

As a necessary condition we imposed that, for the sequence of domains Ωϵ,
dirdiamj(Ωϵ) should converge to zero. This may seem a quite restrictive
condition, however in practice, it is not. Most (natural) sequences of domains
do satisfy this condition in at least one axis. In the next section, we provide
some examples of different kinds of such domains.

For direct methods, such as (semi-)discretization methods, theorem 3.10 cannot
directly be applied. However, for shooting methods ([47, 8]), this theorem is
extremely useful. In such methods, for a fixed value of E, an error function
is computed by propagating solutions over the domain. The error function
measures the mismatch between the propagated solution and the boundary
conditions.

While propagating a solution, one can keep track of how many times the
boundary conditions are met inside the domain. Each of these occurrences
corresponds to a subdomain on which E is an eigenvalue, which in turn, by
theorem 3.10, corresponds to a unique eigenvalue less than E.

3.3.2 Examples
We provide a few examples. The first example illustrates that our result is
a more general formulation of a well known theorem for the one-dimensional
problem. In the second example we will do some symbolic calculations for a
disc-shaped domain. The third example will demonstrate our implemention of
theorem 3.10 in the method developed in section 3.1. Finally, we will take a
look at a much more exotic family of domains to illustrate the applicability of
our theorem to use-cases far beyond what our numerical method is capable of.
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Figure 3.13: Eigenfunction y4, with λ4 ≈ 246.74, of the 1/2-order Bessel
equation [95] −dx

d

(
xdy

dx

)
+ 1

4xy = λxy on [0, 1], with y(0) = y(1) = 0. The four
subintervals, Ωϵ1 = [0, ϵ1], . . . ,Ωϵ4 = [0, ϵ4], on which λ4 is also an eigenvalue
of this equation, are indicated.

3.3.2.1 One-dimensional Sturm–Liouville equation

Let λi be the (i + 1)th eigenvalue13, with eigenfunction yi(x), of the regular
Sturm–Liouville equation

− d
dx

(
p(x)dyi

dx

)
+ q(x)yi = λiw(x)yi

on the interval [a, b] with homogeneous Dirichlet boundary conditions yi(a) =
yi(b) = 0. Defining the series of domains Ωϵ = [a, a + ϵ (b − a)] allows us to
apply theorem 3.10. Thus, there should be i intervals [a, c] with a < c < b,
on which λi is an eigenvalue. As eigenfunctions are unique, up to a scaling
factor, yi should have exactly i zeros inside [a, b]. This is a well-known property
in Sturm–Liouville theory, see theorem 2.4. This fact is also illustrated in
figure 3.13 for the Bessel equation.

Multiple shooting procedures [9, 68, 45] have been developed that implement
this well-known property for Sturm–Liouville problems using the Prüfer trans-
formation [79].

13The first eigenvalue is denoted as λ0, the second as λ1. . .
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3.3.2.2 Standing waves on a disc

Consider the eigenvalues and eigenfunctions of the two-dimensional wave equa-
tion

−∇2ψ(x, y) = λψ(x, y) (3.21)

on the unit disc with homogeneous Dirichlet boundary condition.

In many introductory textbooks to (partial) differential equations, the study of
the wave equation on a drum is considered. In most texts, if not all, the idea
boils down to: with a transformation into polar coordinates and separation
of variables, this two-dimensional problem can be transformed into two one-
dimensional problems. One of these can be solved directly, the other gives rise
to the so-called Bessel functions.

Here we will give a brief overview of the symbolic calculations to solve (3.21)
on the unit disc B(0, 1), with homogeneous Dirichlet boundary conditions.
For more details one could consult for example [7, chapter 4]. As stated,
we first transform (3.21) to polar coordinates. For this we pose x = r cos(θ)
and y = r sin(θ), with r ∈ [0, 1] and θ ∈ [0, 2π]. The solutions u(r, θ) :=
ψ(r cos(θ), r sin(θ)) are now considered in the transformed domain. Applying
the chain rule to ∇2ψ yields the new equation

−∂2u

∂r2 − 1
r

∂u

∂r
− 1
r2
∂2u

∂θ2 = −λu. (3.22)

The boundary conditions are likewise transformed: u(1, θ) = 0 for all θ ∈ [0, 2π]
and u(r, 0) = u(r, 2π) and ∂u

∂θ (r, 0) = ∂u
∂θ (r, 2π) for all r ∈ [0, 1].

Now we use the method of separation of variables to transform (3.22) into two
one-dimensional problems. For this, we separate u(r, θ) = R(r)Θ(θ) into a
product of an r-dependent function and a θ-dependent function. This allows
us to write

−r2R′′

R
− rR′

R
− Θ′′

Θ = λr2.

Rearranging terms to an r-dependent side and a θ-dependent side yields two
separate equations

λr2 + r2R′′

R
+ rR′

R
= k and −Θ′′

Θ = k,

with k a constant and boundary conditions R(1) = 0, Θ(0) = Θ(2π) and
Θ′(0) = Θ′(2π).
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Solutions for Θ(θ) can directly be found as a solution of a linear second order
differential equation with constant coefficients. Thus, Θ only has periodic
solutions

Θ(θ) = Am cos(mθ) +Bm sin(mθ),

if k = m2 with m ∈ {0, 1, 2, . . . }. Note that if m > 0, there are two linear
independent solutions for Θ.

The differential equation for R(r) becomes

r2R′′ + rR+ (λr2 −m2)R = 0.

We find that solutions to our equation can be written using the mth Bessel
function of the first kind R(r) = Jm(r

√
λ), for more details about these

functions see for example [7, section 4.7]. These solutions only satisfy the
boundary condition R(1) = 0 if and only if

√
λ is a positive zero of Jm. If we

denote jm,n as the nth positive root of the mth Bessel function Jm, we find
that all eigenvalues of (3.22), and also of (3.21), are given as the squares of
roots of the Bessel functions. So λ = j2

m,n is an eigenvalue of (3.21). It is a
single eigenvalue if m = 0, otherwise it is a double eigenvalue. The following
table contains the first ten eigenvalues, counted with multiplicity.

Eigenvalue λ0 λ1,2 λ3,4 λ5 λ6,7 λ8,9

Analytical value j2
0,1 j2

1,1 j2
2,1 j2

0,2 j2
3,1 j2

1,2

Numerical value 5.783 14.68 26.37 30.47 40.71 49.22

To apply theorem 3.10 we need to define a family of domains. A most obvious
choice would be all concentric discs with radius at most one. With a variable
substitution we know the eigenvalues of the wave equation on Ωϵ := B(0, ϵ) to
be λi

ϵ2 for all eigenvalues λi on the unit disc. It is obvious that the eigenvalues
λi

ϵ2 as a function of ϵ, are continuous, decreasing, and unbounded as ϵ → 0+.
This confirms lemma 3.9.

Concentric discs may not be the most thrilling examples. But in the example
in section 3.3.2.4 we will consider a much more interesting family of domains
for the wave equation on a disc.

3.3.2.3 A two-dimensional Schrödinger equation

In this example, we will take a look at a two-dimensional time-independent
Schrödinger equation with homogeneous Dirichlet boundary conditions on a
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rectangle:
−∇2ψ + V (x, y)ψ = Eψ.

In section 3.4.3, we will study the Schrödinger problem with the potential

V (x, y) = (1 + x2)(1 + y2)

on the square [−5.5; 5.5] × [−5.5; 5.5] with homogeneous Dirichlet boundary
conditions. The first eigenvalues are reported in [47] to be as follows.

E0 3.1959181 E6 = E7 9.9280611
E1 = E2 5.5267439 E8 = E9 11.3118171

E3 7.5578033 E10 12.1032536
E4 8.0312723 E11 12.2011790
E5 8.4445814 E12 13.3323313

For this problem we will use the method as described in section 3.1. In
summary, this is a shooting method, which means that it guesses a value for E
and calculates a matching error. This matching error is then used to improve
the estimation of E. This process is repeated until E is found up to the desired
accuracy.

By propagating all possible eigenfunctions u(x, y) from the bottom and the top
of the domain to the matching line, this matching error is calculated. In the
context of theorem 3.10, this propagation can be thought of as going through
all possible subdomains from figure 3.11. If, while propagating, any of the
possible eigenfunctions u becomes identically zero on a line, then a subdomain
is found on which E is an eigenvalue.

For each E, while propagating, one can keep track of how many u did become
zero on a line, or in other words, on how many subdomains E is an eigenvalue.
Following theorem 3.10, this number tells us how many eigenvalues there are
less than E on the whole domain. In figure 3.14, keeping track of when an
eigenfunction becomes zero on a line is demonstrated. For E = 11, all domains
are visualized where any u(x, y) = 0 for all x ∈ [xmin, xmin]. Notice that there
may be domains on which multiple eigenfunctions are found for that particular
value of E. These domains should be counted multiple times. In figure 3.14, we
see that ymax ≈ 0.80845 is counted twice. From the tabulated true eigenvalues
in [47], we know that there are indeed exactly 8 eigenvalues less than E = 11.
This example thus verifies theorem 3.10 as well.

For completeness, we will also verify lemma 3.9 by taking a closer look at the
graph from figure 3.12. In figure 3.15 we see a zoomed version. These graphs
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Figure 3.14: There are 8 (smaller) rectangles on which E = 11 is an eigenvalue
of the Schrödinger problem from example 3.3.2.3.
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Figure 3.15: Here, a zoomed in version of figure 3.12 is displayed. Each blue
graph represents an eigenvalue of the Schrödinger equation from example 3.3.2.3.
The fixed line E = 11 is represented in red. Each crossing of the red line
and a blue graph represents a smaller subdomain on which E = 11 is an
eigenvalue. These subdomains, with corresponding eigenfunction, are illustrated
in figure 3.14.
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Ω0.25 Ω0.5 Ω0.75 Ω1

Figure 3.16: An illustration of the family of domains we consider in sec-
tion 3.3.2.4.

describe how the eigenvalues evolve through the growing domain. If we draw
a horizontal line at E = 11, as in figure 3.15, eight curves intersect this line.
Each curve corresponds to a lower lying eigenvalue, just as lemma 3.9 predicts.

3.3.2.4 A more exotic family of domains

As a numerical demonstration for theorem 3.10 with less trivial domains,
we consider the wave equation on a series of moon-shaped domains with
homogeneous Dirichlet boundary conditions. Visually, these domains can
be found in figure 3.16. Mathematically, we define the transformation T :
[−π

2 ,
π
2 ] × [−1, 1] → R2 as:

T (α, t) =
(

cot(α) sin(tα)
1

sin(α) − cot(α) cos(tα)

)
. (3.23)

Strictly speaking, for α = 0, T (α, t) is undefined. In these points, the limit
limα→0 T (α, t) should be considered. In figure 3.17, this transformation is
visualized. Note that when t is limited to [−1, 2ϵ−1] the transformation results
in a moon-shape.

To illustrate the applicability of theorem 3.9, we will consider the family of
continuous subdomains

Ωϵ =
{
T (α, t)

∣∣∣∀α ∈
[
−π

2 ,
π

2

]
,∀t ∈ [−1, 2ϵ− 1]

}
.

On each of these subdomains Ωϵ, we will approximate the eigenvalues of the
Schrödinger equation with zero potential:

−∇2ψ(x, y) = λψ(x, y). (3.24)
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Figure 3.17: The transformation T (α, t) from (3.23) is applied to a grid of
points.

As a boundary condition we impose ψ(x, y) = 0 on the boundary ∂Ωϵ.

Later on, the approximate eigenvalues found can be compared to the eigenvalues
on the unit disc Ω1, as described in section 3.3.2.2. Theorem 3.10 promises
that, for an eigenvalue λi on the unit disc, exactly i moon-shaped subdomains
can be found on which this λi is also an eigenvalue.

Transforming the problem onto a rectangular domain
Approximating solutions for the eigenvalues of (3.24) on such an exotic domain
Ωϵ is not a trivial task. In principle, this problem could be seen as solving the
Schrödinger equation on [−1, 1]2 with the potential

V (x, y) =
{

0 if (x, y) ∈ Ωϵ
+∞ otherwise.

Numerically, this does not make the problem easier. On the one hand, the
rectangular domain would allow us to employ the earlier developed method. On
the other hand however, the potential becomes infinite, which is very difficult
to implement with sufficiently high accuracies. Also, Ixaru’s two-dimensional
method has difficulties with non-continuous potentials. Note that the inability
to tackle non-continuous problems is a phenomenon present in many high-order
numerical methods. In section 2.5.2, we have seen that with one-dimensional
problems, Matslise can avoid these issues by smartly choosing its piecewise
approximation. For higher-dimensional problems, these kinds of tricks are no
longer possible.
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We propose another technique. We can transform equation (3.24) from these
moon-shaped domains to a more manageable rectangular domain. The cost of
this transformation is that (3.24) will no longer be a Schrödinger equation.

As stated earlier, the transformation we will apply is the function (x, y) = T (α, t)
from (3.23). To formalize this, we introduce ϕ(α, t) as

ϕ(α, t) = ψ(T (α, t)).

With this transformation, the Schrödinger equation (3.24) transforms into

−Dϕ(α, t) = λϕ(α, t), (3.25)

with ϕ(α, t) defined on the domain Ξϵ =
[
−π

2 ,
π
2
]

× [−1, 2ϵ − 1]. Note that
T (Ξϵ) = Ωϵ. As boundary conditions we impose ϕ(α, t) = 0 if (α, t) ∈ ∂Ξϵ.
In this expression, D is the differential operator corresponding to ∇2ψ(x, y).
Calculating this operator by hand is tedious, therefore we will use sage to
do the symbolic heavy lifting for us. To be able to work with the operator
D, we first need a procedure to compute it. To ease notation, we will denote
T (α, t) = (T x(α, t), T y(α, t)), and omit the arguments to the functions ϕ, ψ
and T . Derivatives will be denoted as ϕα = ∂ϕ

∂α and ϕαα = ∂2ϕ
∂α2 . We compute

all first and second derivatives of ϕ(α, t).




ϕα = ψxT
x
α + ψyT

y
α

ϕt = ψxT
x
t + ψyT

y
t

ϕαα = ψxT
x
αα + ψyT

y
αα + ψxx(T xα )2 + 2ψxyT xαT yα + ψyy(T yα)2

ϕαt = ψxT
x
αt + ψyT

y
αt + ψxx(T xα )(T xt ) + ψxy (T xαT

y
t + T xt T

y
α)

+ ψyy(T yα)(T yt )
ϕtt = ψxT

x
tt + ψyT

y
tt + ψxx(T xt )2 + 2ψxyT xt T

y
t + ψyy(T yt )2

(3.26)

The question now is: can we isolate ψxx + ψyy from the right-hand side of the
system from (3.26)? As this is a linear system in the derivatives of ψ, there is
a unique linear combination c(α, t) = (cα, ct, cαα, cαt, ctt) such that:

cαϕα + ctϕt + cααϕαα + cαtϕαt + cttϕtt = ψxx + ψyy.

This linear combination allows us to finally determine the operator D, and by
extension, the partial differential equation (3.24) transforms into. Note that,
since c is dependent on α and t, the operator D has this dependency as well,

D = cα
∂

∂α
+ ct

∂

∂t
+ cαα

∂

∂αα
+ cαt

∂

∂αt
+ ctt

∂

∂tt
.
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A specialized numerical method
Before we can analyze the eigenvalues of the transformed operator −D in
relation to the domain Ωϵ, we still need a method to approximate these
eigenvalues. For general partial differential equations with appropriate boundary
conditions, some standard techniques are available. [37, Chapter 11] contains an
overview of some of these methods. Our choices include, but are not limited to,
a finite difference method, a finite element method, or a semidiscrete method
with shooting. For our purposes, a method that is easy to implement that gives
reliable results will be the best choice. A simple finite difference scheme will
be sufficient.

We will place an nα×nt grid on the domain Ξϵ. This gives rise to the equidistant
points −π

2 = α0, α1, . . . , αnα
= π

2 , and the points −1 = t0, t1, . . . tnt
= −1 + 2ϵ.

The distances between two points are given by hα = π
nα

and ht = 2ϵ
nt

. Because of
the homogeneous Dirichlet boundary conditions ϕ0,j = ϕnα,j = ϕi,0 = ϕi,nt

= 0
for all i and j. These grid points allow us to write down approximations of the
first and second derivatives of ϕ(α, t) in each of the grid points ϕi,j = ϕ(αi, tj).

∂ϕ

∂α
(αi, tj) ≈ 1

2hα
(ϕi+1,j − ϕi−1,j)

∂ϕ

∂t
(αi, tj) ≈ 1

2ht
(ϕi,j+1 − ϕi,j−1)

∂2ϕ

∂α2 (αi, tj) ≈ 1
h2
α

(ϕi+1,j − 2ϕi,j + ϕi−1,j)

∂2ϕ

∂α∂t
(αi, tj) ≈ 1

4hαht
(ϕi+1,j+1 − ϕi+1,j−1 − ϕi−1,j+1 + ϕi−1,j−1)

∂2ϕ

∂t2
(αi, tj) ≈ 1

h2
t

(ϕi,j+1 − 2ϕi,j + ϕi,j−1) .

When working with finite difference schemes, especially for a more advanced
operator such as D, writing out all formulae becomes quite tedious. Therefore,
it is much more comprehensive if we introduce some matrix notation. Let us
denote In as the n× n identity matrix. Furthermore, a diagonal matrix with
a1, . . . , an on the diagonal will be denoted as diagn(a1, . . . , an), and an n× n
tridiagonal Toeplitz matrix, with c0 on the main diagonal, c−1 below it and
c1 above it, will be denoted as tridiagn(c−1, c0, c1). To aid the notation of the
finite difference approximations we introduce D(1)

n = 1
2 tridiagn(−1, 0, 1) and

D(2)
n = tridiagn(1,−2, 1).

The Kronecker product of a k × l matrix A and an m× n matrix B is defined
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as the km× ln block matrix:

A ⊗ B :=




A1,1B A1,2B . . . A1,lB
A2,1B A2,2B . . . A2,lB

...
... . . . ...

Ak,1B Ak,2B . . . Ak,lB


 .

To approximate (3.25) as a matrix problem, we need to aggregate the grid
points ϕi,j as a vector. For this we define

ϕ :=
(
ϕ1,1 ϕ2,1 . . . ϕnα−1,1 ϕ1,2 . . . ϕnα−1,nt−1

)⊺.

Also, to be able to write down D as a matrix operation, we need to define

Ct := diag
(
ct(α1, t1), . . . , ct(αnα−1, t1), ct(α1, t2), . . . , ct(αnα−1, tnt−1)

)
,

and analogously for Cα, Cαα, Cαt and Ctt.

All these notations allow us to approximate (3.25) as a matrix eigenvalue
problem:

−Mϕ = λϕ

with

M = 1
hα

Cα
(

Int−1 ⊗ D(1)
nα−1

)
+ 1
ht

Ct
(

D(1)
nt−1 ⊗ Inα−1

)

+ 1
h2
α

Cαα
(

Int−1 ⊗ D(2)
nα−1

)
+ 1
h2
t

Ctt
(

D(2)
nt−1 ⊗ Inα−1

)

+ 1
hαht

Cαt
(

Int−1 ⊗ D(1)
nα−1

)(
D(1)
nt−1 ⊗ Inα−1

)
.

Analysis of eigenvalues in relation to the domain
With a numerical method to compute eigenvalues of the wave equation (3.24) on
moon-shaped domains Ωϵ, and a comprehensive analysis of the true eigenvalues
of this equation on the disc Ω1, we are able to illustrate theorem 3.9.

By employing our numerical method on different domains Ωϵ, we can construct
figure 3.18. This figure was computed with nα = nt = 61 (which makes M a
3600 × 3600 sparse matrix) for 200 equidistantly-spaced values for ϵ. Here, each
line corresponds to a different eigenvalue. The lowest blue line visualizes the
changes in the lowest eigenvalue according to the domain. For small domains
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Figure 3.18: Eigenvalues of the Schrödinger equation with zero potential on
the family of domains of section 3.3.2.4 in relation to ϵ.

ϵ → 0, this value becomes larger. The red line right above the blue line
corresponds to the eigenvalue with index 1 of the wave equation on Ωϵ. For Ω1,
this eigenvalue has a double multiplicity λ1 = λ2. But for all smaller domains,
this degeneracy disappears, and λ1 is a single eigenvalue. Which eigenvalue
each line represents is marked on the right side. In accordance with theorem 3.9,
all lines in figure 3.18 are continuous, decreasing and unbounded when ϵ → 0.

Consider now the fixed value of E = 45. From the analysis in 3.3.2.2 we know
that there are eight eigenvalues, counted with multiplicity, less than E. This
means that, following theorem 3.10, there should be exactly eight moon-shaped
domains on which E is also an eigenvalue. These eight domains, with the
corresponding eigenfunction of E = 45, are plotted in figure 3.19.

3.4 Numerical experiments
In the previous section, we have made some theoretical advancements. To
demonstrate the relevance and effectiveness of the provided theory, we proudly
present some numerical results. In summary, the obtained results are at least
as accurate as the original method in [47], but they are found significantly
quicker, even when corrected for the more powerful modern CPUs.
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Figure 3.19: There are eight smaller moon-shaped domains on which λ = 45 is
an eigenvalue of the wave equation −∇2ψ = λψ with homogeneous Dirichlet
boundary conditions.
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Figure 3.20: The relative error for the first hundred eigenvalues of the zero
potential Schrödinger problem on the square [0, π] × [0, π] with homogeneous
Dirichlet boundary conditions. Degenerate eigenvalues are connected. If a color
seems missing for a value, it coincides with another drawn point.

Another large improvement can be found in the ‘autonomy’ of the algorithm.
In [47], results for different steps sizes are tabulated. Since we implemented
automatic step size selection, this distinction is no longer relevant. To demon-
strate that our improvements facilitate using this method, we will also provide
some python-code. The example code makes use of the package Pyslise2D.
This package contains our implementation (in C++, see the discussion from sec-
tion 2.6.1) of the earlier described algorithm, together with our improvements.

Via pip, the package Pyslise2D can be installed.

1 pip install pyslise2d

3.4.1 The zero potential
As a first example we will find eigenvalues of the Schrödinger equation with a
zero potential

−∇ψ(x, y) = λψ(x, y)

on the domain [0, π] × [0, π] with homogeneous Dirichlet boundary conditions.

In section 3.0.1, we have calculated the eigenvalues to be of the form i2 + j2

for any i, j ∈ N+, and the corresponding eigenfunction is given by ψ(x, y) =
sin(ix) sin(jy). To reiterate, the first few eigenvalues are

2, 5, 5, 8, 10, 10, 13, 13, 17, 17, 18, 20, 20, 25, 25, 26, 26, 29, 29, 32, . . .
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Figure 3.21: When using N = 5. On the left: the found 22nd eigenfunction.
On the right: the missing 23th eigenfunction.

Despite this being the easiest Schrödinger problem to consider, it is non-trivial
in the sense that the multiplicity of an eigenvalue is rather unpredictable.

In figure 3.20, the relative errors of the first hundred eigenvalues found with
Pyslise2D are presented. Even for an extremely low number of basis functions
used on each sector (N = 5), we are still able to reach the most accurate results
possible for the first two dozen eigenvalues. However, once the index of the
eigenvalue is sufficiently high, the relative error jumps to a value close to 1.

The reason for these sudden wrong results can be found in the fact that the
Schrödinger problem with zero potential on a rectangular domain is definitely
an easy problem for this method. Upon close inspection, we have found that
Pyslise2D only uses a total of three sectors on the whole domain, independent
of the requested accuracy. On each sector, exactly the same one-dimensional
problem is solved, yielding exactly the same basis functions bi(x) = sin(ix). And
coincidentally, the two-dimensional eigenfunction corresponding to E = i2 + j2

can be written as ψ(x, y) = c(y) sin(ix) for a y-dependent function c(y). In
summary for this method, by construction, the Schrödinger problem with zero
potential gets solved exactly. Yet, for N = 5 we see that E22 = E23 is not
found correctly. Notice that E22 = E23 = 37 = 12 + 62. When only five basis
functions are considered on a sector, the necessary function sin(6x) will not
be present, and therefore this eigenvalue cannot be correctly found. As an
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illustration, figure 3.21 visualizes this missing eigenfunction.

Let us also address a possible concern: why did our method not detect this
missing eigenvalue, using theorem 3.10? Our method checks how many times
there was a linear combination of the propagated functions that vanishes. If an
insufficient number of basis functions are used, no such vanishing combination
will be found, and the index will not be correctly determined. Here, the
importance of a sufficiently large basis is apparent.

To illustrate the use of Pyslise2D we present some sample code to solve this
Schrödinger problem.

1 from pyslise2d import Pyslise2D
2 from math import pi
3

4 problem = Pyslise2D(lambda x, y: 0, 0, pi, 0, pi,
5 tolerance=1e-8, N=10)
6 print(problem.eigenvaluesByIndex(0, 10))

This code will output a list of all eigenvalues as tuples. For each eigenvalue
we get its index, the eigenvalue itself and its multiplicity. This multiplicity
is numerically detected, thus this may be inaccurate. An eigenvalue can be
present multiple times in the list to compensate.

3.4.2 The harmonic oscillator potential
As the zero potential is quite easy for this method, next we will consider the
quantum harmonic oscillator with potential V (x, y) = x2 + y2. On the infinite
domain R2, the true eigenvalues are known to be

2, 4, 4, 6, 6, 6, 8, 8, 8, 8, 10, . . . , 10, 12, . . .

The method does not support infinite domains, thus we will assume homo-
geneous Dirichlet boundary conditions on Ω = [−9.5, 9.5] × [−9.5, 9.5]. This
allows a comparison to section 4.2.3.1.

Our implementation is relatively autonomous, there are only two parameters
to study. First we can specify a tolerance to influence the automatic sector size
selection. And second, we can influence the number of basis functions N to
use on each sector.

In figure 3.22, we provide a comparison of the relative error of the first few
eigenvalues when varying these two parameters. The first thing we must remark
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Figure 3.22: A comparison of relative error of the first fifty eigenvalues of the
harmonic oscillator problem for different basis sizes N and requested tolerances
tol. For N = 22, the algorithm with different tolerances used respectively 19,
29 and 40 sectors.
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is that our implementation has degenerate eigenvalue detection. This can be
seen in the equal error for each of these eigenvalues.

For a small basis size (N = 6), we observe the same behavior as in figure 3.20.
From a certain point onward, eigenvalues will be plain wrong. For the first fifty
eigenvalues, this behavior disappears once N is sufficiently large.

For N = 14 and N = 22, we are able to verify that the method respects the
requested accuracy of 10−4, 10−6 and 10−8 respectively. Even stronger, this
accuracy is respected with a very comfortable margin. This can be attributed to
a conservative error estimate in the automatic sector size detection. Similar as
in Matslise 3.0, we have opted to err on the side of caution in this estimation.
This way, we are much more confident that the requested accuracy is actually
reached.

As a reference, the following code can be used to solve this problem.

1 from pyslise2d import Pyslise2D
2

3 def V(x, y):
4 return x * x + y * y
5

6 harmonic = Pyslise2D(V, -9.5, 9.5, -9.5, 9.5
7 tolerance=1e-8, N=14)
8 print(harmonic.eigenvaluesByIndex(0, 30))

3.4.3 Ixaru’s potential
For the next example we follow [47] and study the problem from section 3.3.2.3.
Consider the Schrödinger problem with potential

V (x, y) = (1 + x2)(1 + y2)

on the square domain [−5.5, 5.5] × [−5.5, 5.5] with homogeneous Dirichlet
boundary conditions.

For this problem no analytical results are available. However, in [47] numerical
results are reported.

By using pyslise2d, the code to solve this problem is quite straightforward.

1 from pyslise2d import Pyslise2D
2

3 def V(x, y):
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Ixaru [47] Our results
E0 3.1959181 3.1959180852
E1 = E2 5.5267439 5.5267438744
E3 7.5578033 7.5578033268
E4 8.0312723 8.0312723403
E5 8.4445814 8.4445813616
E6 = E7 9.9280611 9.9280610570
E8 = E9 11.3118171 11.3118170506
E10 12.1032536 12.1032535787
E11 12.2011790 12.2011789679
E12 13.3323313 13.3323312712

Table 3.2: The first few eigenvalues of the problem with potential V (x, y) =
(1 + x2)(1 + y2) on the domain [−5.5; 5.5] × [−5.5; 5.5].

4 return (1+x*x)*(1+y*y)
5

6 problem = Pyslise2D(V, -5.5,5.5, -5.5,5.5,
7 tolerance=1e-8)
8 problem.eigenvaluesByIndex(0, 12)

In table 3.2, our results are compared to the reference values calculated by Ixaru
in [47]. There, the computation took 45 seconds. Our values were computed
within 1.4 seconds on an Intel i7-8700K. Blindly comparing these run-times is
ill-informed as the hardware is significantly different. Regardless, we are quite
satisfied with the speed our program is able to achieve.

Upon close inspection of table 3.2, we remark that our results agree with these
from [47] in all digits.

Alternative to a table of values, we plot the relative errors of the found
eigenvalues for different basis sizes N and requested tolerances in figure 3.23.
Here the reference values were not computed with Pyslise2D, rather we
employed our method from the next chapter.

Upon analysis of figure 3.23, we can observe in all panels a clear trend in the
blue curve with N = 6: if the index of the eigenvalue becomes larger, the
accuracy decreases. For the red curve with N = 12, a similar trend can be
suspected in the eigenvalues with index close to 30.
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Figure 3.23: A comparison of relative error of the first thirty eigenvalues of
the Schrödinger problem with Ixaru’s potential from section 3.4.3 for different
basis sizes N and requested tolerances.
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Braun et al. [18] Our results
E0 0.998595 0.9985947726
E1 = E2 1.990077 1.9900767601
E3 2.956243 2.9562429896
E4 = E5 2.985326 2.9853264281
E6 = E7 3.925964 3.9259637501
E8 3.982417 3.9824172945
E9 3.985761 3.9857609265
E10 4.870144 4.8701443380
E11 = E12 4.898644 4.8986446755
E13 = E14 4.986251 4.9862510297
E15 5.817019 5.8170196626
E16 5.817027 5.8170275922

Table 3.3: The first few eigenvalues of the problem with potential V (x, y) =
x2 + y2 + 1

6
√

5y
(
3x2 − y2) on the domain [−6; 6] × [−6; 6]. The results are

reported divided by 2 to provide compatibility with [18].

3.4.4 The Hénon–Heiles potential
Another interesting example is the Hénon–Heiles potential. The corresponding
Schrödinger problem is given by:

−∇2ψ +
(
x2 + y2 +

√
5

30 y
(
3x2 − y2)

)
ψ = Eψ.

Following [18], we impose homogeneous Dirichlet boundary conditions on the
square [−6, 6] × [−6, 6]. Our results are reported in table 3.3. The computation
only took 1.3 seconds, and the results are identical, within the available precision
in [18].

By now the code for solving this problem will look familiar.

1 from pyslise2d import Pyslise2D
2 from math import sqrt
3

4 def V(x, y):
5 return x*x + y*y + sqrt(5)/30 * y * (3*x*x - y*y)
6
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Figure 3.24: The first twelve eigenfunctions of the Schrödinger problem with
the Hénon–Heiles potential on [−6, 6] × [−6, 6].

7 problem = Pyslise2D(V, -6,6, -6,6, tolerance=1e-8)
8 problem.eigenvaluesByIndex(0, 16)

With our program, also the eigenfunctions can be computed. This is demon-
strated in figure 3.24.

Here we have opted to not include similar figures to visualize the relative errors
as in the previous experiments. These graphs do not let us gain any more new
insights.
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3.5 Conclusions
In this chapter, we have studied the method introduced by Ixaru in [47]
for two-dimensional time-independent Schrödinger equations. The original
work presented an intriguing innovative method accompanied by a promising
numerical example. Section 3.1 presents an overview of this method as first
described. In section 3.2, we proudly presented our additions and improvements
to this method. In particular, we have devised a way to reliably determine the
index of an eigenvalue. For this, we developed some new theory in section 3.3.

Section 3.4 was dedicated to some numerical experiments. In this thesis, in
contrast to an article, we have the luxury to take the time for a much deeper
dive into some numerical experiments. These experiments have been promising
and were able to reach the requested accuracy. This verifies that the method
and our improvements are definitely valuable in solving time-independent
two-dimensional Schrödinger equations.

However, this is not the perfect method. The accuracy of higher eigenvalues
is limited by the considered basis size N . Since we are solving many coupled
systems of Schrödinger equations, due to numerical instability choosing N
extremely large becomes infeasible. Nonetheless, this method has proven itself
to be capable, and worth investigating. During the process of our investigation,
we were able to undoubtedly improve this method and discovered some new,
more widely applicable theoretical results.

Implementing this method is (and has been) difficult. There are many intercon-
nected parts, with each their own numerical nuances. In the next chapter we
will start with the analysis of a relatively simple technique based upon a finite
difference scheme. We will see that this technique is much easier to implement,
is able to reach extremely accurate results, and all this without significantly
more computation time.
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Chapter 4

Strands: a new method for
2D time-independent
Schrödinger equations

In chapter 2, we studied a constant perturbation method for one-dimensional
Sturm–Liouville problems. We have seen a brief history about these CP-
methods, as well as a thorough overview about how these methods can be
implemented. The numerical examples illustrated the benefits and accuracy of
the studied techniques.

Chapter 3 was dedicated to the treatment of a recent method to solve time-
independent two-dimensional Schrödinger equations. This method aims to use
the strengths of the constant perturbation methods for higher dimensional
problems. This new method is promising, and we developed many improvements
upon the original idea.

One of the unique powers of the CP-methods is their ability to not only compute
low eigenvalues accurately, but even to increase accuracy for higher eigenvalues.
For Sturm–Liouville problems there are methods that can accurately compute
low eigenvalues and there are other methods that are accurate for higher
eigenvalues (e.g. asymptotic methods [59, 104]). A CP-method, however, is
one of the few techniques that is accurate for low as well as high eigenvalues.

For two dimensions, this property did not translate cleanly. The method

169
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described in chapter 3 tries to capture this by considering solutions of a one-
dimensional Schrödinger problem in the x-direction, while a method for a
coupled system of Schrödinger equations has been used in the y-direction. In
theory, this method is capable of computing any eigenvalue. In practice, this
is not the case. A two-dimensional eigenfunction is represented as a linear
combination

∑
i ci(y)βi(x) of one-dimensional basis functions βi(x). This basis

is well-chosen, such that even a few functions can already describe a two-
dimensional eigenfunction sufficiently well. When implementing this, the basis
has to be finite. As eigenfunctions corresponding to higher eigenvalues will
become more and more oscillatory, the chosen finite basis will no longer be
able to express all necessary details.

That the basis is finite thus limits the accuracy for higher eigenvalues, which
negates one of the strongest benefits of the employed CP-methods. As such, we
believe that the perfect method for the higher-dimensional time-independent
Schrödinger equation is one which does not decrease in accuracy as higher eigen-
values are requested, just like the CP-methods are for the one-dimensional case.
Developing such a method will, most likely, require new and very complicated
formulae.

For clarity, we did not develop such a perfect method. But in the last few years
I have played with the idea...

More realistically, during our research into the method of Ixaru, we have found
other work, also focussing upon the time-independent Schrödinger problem.
These ideas and methods have inspired us to develop our own technique. The
new methods we propose try to fix or mitigate some issues present in the other
methods.

4.1 Inspiration
After careful implementation and thorough testing of Ixaru’s method from
chapter 3, I browsed through the literature with renewed appreciation for
the Schrödinger problem. When investigating that method, many obstacles
and challenges arose. It was an interesting task to balance computation time,
symbolic formulae and numerical accuracy. So with this in mind, I came
across [102] by Wang and Shao.

In this article, the authors proposed a new kind of discretization scheme
for solving two-dimensional time-independent Schrödinger equations. Before
studying the details of a new method, I like to review its numerical results.
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In [102], the algorithm was tested on two potential functions. First, the
harmonic oscillator was considered. Schrödinger problems with this potential
function are not extremely difficult to solve, but they capture some of the
challenges that numerical algorithms may face, while still having symbolic
solutions for the eigenvalues. Second, they provided results for the Hénon–Heiles
potential. Here, the exact solutions are not known, but reliable approximations
exist. For both potentials, the results were quite impressive. They reached a
high accuracy for a significant number of eigenvalues without using excessive
computation time.

But the thing that strikes me most about [102] is the simplicity of the method.
They constructed formulae for a discrete approximation on a grid. Finding
these kinds of results within the literature is disheartening and inspirational at
the same time. At first glance, they seem to be able to reach higher accuracy
with a simpler method than Ixaru’s work [47] and our improvements [8] to it.
Before throwing away all our work, and declaring [102] to be superior, let us
analyze it ourselves.

4.1.1 A finite difference scheme
As in chapter 3, we are considering the Schrödinger equation

−ψ′′(x, y) + V (x, y)ψ(x, y) = Eψ(x, y) (4.1)

on a rectangular domain Ω = [xmin, xmax] × [ymin, ymax] with homogeneous
Dirichlet boundary conditions, so ψ(x, y) = 0,∀(x, y) ∈ ∂Ω. The potential
V (x, y) is known, and eigenvalues E with corresponding eigenfunctions ψ(x, y)
which satisfy (4.1) are sought.

In [102], the authors discretize the domain Ω with an equidistant nx × ny grid.
With this, they approximate the second partial derivative of a function ψ(x, y)
with, what they call, a new scheme:

∂2

∂x2ψ(x, y) = − 1
h2

Nx∑

i=−Nx

ciψ(x+ ih, y).

In this expression, h is the x-step of the equidistant grid. An analogous formula
for the second partial derivative of ψ(x, y) with respect to y is proposed, with
y-step η:

∂2

∂y2ψ(x, y) = − 1
η2

Ny∑

i=−Ny

ciψ(x, y + iη).



172 Chapter 4. Strands: new 2D method

To determine the value of ci, the authors propose to assume N = Nx = Ny
and use the Taylor series expansion of the left-hand side of
(
∂2

∂x2 + ∂2

∂y2

)
ψ(x, y) = − 1

h2

N∑

i=−N
ci

(
ψ(x+ ih, y) +

(
h

η

)2
ψ(x, y + iη)

)
.

In [102], the coefficients ci for Nq = 3, 4, 5, 6 are provided. For points close to
the boundary of the domain, the authors propose to assume that the unknown
eigenfunction ψ(x, y) will always be identically zero outside the domain Ω.
With this assumption, the same formulae can be used for every point in the
discretization, even those close to the boundary of the domain.

Using these formulae, the problem now reduces to a simple, albeit very large,
square matrix eigenvalue problem:


−Tnx

⊗ Iny
− Inx

⊗ Tny
+ diag



V (x1, y1)
V (x1, y2)

...





u = λu. (4.2)

Here, Tnx
is the symmetric Toeplitz1 nx × nx matrix with the first row(

c0 c1 · · · cNx
0 · · ·

)
, analogous for Tny

. The n× n identity matrix is
denoted as In. The operation · ⊗ · is the Kronecker product. And finally, the
vector of unknowns u is the approximation of ψ in each of the grid points:
u ≈

(
ψ(x1, y1) ψ(x1, y2) · · ·

)⊺. The matrix on the left-hand side of (4.2)
can be directly computed. It is valuable to note that most of the entries of this
matrix will be zero, so considering it as a sparse matrix is preferred. Many
classical, well-tested solvers exist for sparse eigenvalue problems. The authors
of [102] have used algorithms provided by mathematica [41].

Before reviewing, and recalculating their numerical results, I want to take
the time to thoroughly analyze their formulae. Using an equidistant grid and
coefficients which optimize for the Taylor series of the function in question, is
oddly reminiscent of finite difference approximations. To confirm this similarity

1A matrix is called Toeplitz if each diagonal only contains a constant value. In other
words, a matrix A is Toeplitz if it can be written as follows, and it is symmetric if a−i = ai.




a0 a1 a2 · · ·

a−1 a0 a1
. . .

...
. . .

. . .
. . .
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we have calculated the central finite difference approximations of the second
order derivative.

The following table contains the first few central symmetric finite differences.

Order c0 c−1 = c1 c−2 = c2 c−3 = c3 c−4 = c4 c−5 = c5

2 −2 1
4 − 5

2
4
3 − 1

12

6 − 49
18

3
2 − 3

20
1
90

8 − 205
72

8
5 − 1

5
8

315 − 1
560

10 − 5269
1800

5
3 − 5

21
5

126 − 5
1008

1
3150

These give exactly the same coefficients as in [102]. It is quite disingenuous to
call this a new scheme. The study of finite differences can be traced back to,
among others, Newton. One of the first English books on this topic was written
by Boole [16] in 1860, with many more textbooks to follow [94, 54]. Even the
symbolic construction of high-order approximations has already been studied
and tabulated as early as 1967 [11, 56, 31]. In the context of one-dimensional
Schrödinger equations, our research group already studied techniques based
upon finite difference approximations some 40 years ago [29, 30].

Besides this remark, [102] is very valuable as an application of very high order
versions of these well-known formulae to the two-dimensional time-independent
Schrödinger equation. Their numerical results are still valid and nonetheless
impressive.

4.1.1.1 Numerical experiments

The harmonic oscillator
As a first example, we will replicate the results of [102] for the harmonic
oscillator:

−∇2ψ(x, y) +
(
x2 + y2)ψ(x, y) = Eψ(x, y) (4.3)

on the domain [−9.5, 9.5] × [−9.5, 9.5] with homogeneous Dirichlet boundary
conditions. Notice that in [102], the authors have chosen to scale the potential
and eigenvalue by an extra factor of two. We did not do this in our experiment,
as such our computed eigenvalues will be twice as large. However, the relative
errors remain the same.

In figure 4.1, the relative errors for the first 100 eigenvalues are plotted. This
is done for h = η ∈

{ 19
40 ,

19
60 ,

19
100
}

and Nx = Ny ∈ {5, 10, 20, 25}. In these
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Figure 4.1: These graphs display the relative error of each of the first 100
eigenvalues of the harmonic oscillator (4.3), computed for different values of
h = η and Nx = Ny. Repeated eigenvalues are connected.
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graphs, a few things can be noted. Unsurprisingly, when Nx = Ny is increased,
the results become more accurate. When h = η is decreased, that is to say,
more grid points are used, the results also become more accurate. When
larger eigenvalues are computed, the accuracy decreases, as is the case with
most algorithms for approximating Schrödinger equations. The corresponding
eigenfunctions become more and more oscillatory, and are thus more difficult
to approximate accurately.

But most impressively, all these graphs were computed within a minute on a
simple laptop. More detailed runtime analysis can be found in section 4.2.4.
Furthermore, the obtained results by themselves are also impressive. In the
most accurate case h = η = 19

100 and Nx = Ny = 20, the first 100 eigenvalues
are found with 45 bits of precision, which is close to the ideal machine precision
of 53 bits.

To get a deeper understanding of this finite difference method, it may be
beneficial to study the asymptotic behavior of the error, with respect to the
number of discretization points and the index of the eigenvalue. The finite
difference approximation error can be used as a jumping point. Assume
N = Nx = Ny, then the finite difference approximation of the second derivative
of a function f : R → R is of the form:

f ′′(x) = 1
h2

N∑

i=−N
cif(x+ ih) + O

(
h2N).

Going further with a theoretical analysis becomes unnecessarily difficult. We
will estimate the order by using the numerical results for the first 100 eigenvalues
of the harmonic oscillator, calculated for the values of h = η = 1

n for n ∈
{20, 30, 40, 50, 60, 70, 80, 90, 100}. These nine different sets of parameters yield
for each of the 100 eigenvalues (with index k ∈ {1, 2, . . . , 100}) a data point.
Next, through all these points, we find the best fitting curve which follows
the expression α1h

α2kα3 . In this case, we define the best fitting curve to be
such that for the error ϵ(h)

k (for each eigenvalue k calculated with a step size of
h = η), the following is minimized:

∑

k,h

∣∣∣log |ϵ(h)
k | − log(c1hc2kc3)

∣∣∣
2

.

These best fits, with Nx = Ny = N are summarized in the following table.
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N 5 10 15 20
Error O

(
h7.59k2.10) O

(
h14.00k3.38) O

(
h19.50k3.91) O

(
h21.96k4.23)

It is important to note that these values are estimates, and are quite sensitive
to the used values of n and k. But some trends are visible. We first note
that increasing N indeed increases the order in h as well, maybe not as much
as theoretical assumed (O

(
h2N)), but nonetheless significantly. One of the

reasons this theoretical value of h2N is not reached is because of the limited
precision available in the double floating point type. For low eigenvalues, dense
grids, and higher values of N , the error is so small that the numerical precision
of the datatype becomes the main source of error. Another visible behavior is
that a more accurate (higher order in h) method also has a larger exponent
with respect to k. This means that higher eigenvalues are asymptotically less
accurate. This property can also be seen in the graphs of figure 4.1. A virtual
line through the points corresponding to N = 5 is less steep than a line through
the points of N = 10.

For one-dimensional problems the behavior of the error with respect to k has
already been well studied and improved. In [76], expressions are constructed
which provide a correction to the numerical approximation with a finite differ-
ence scheme for Sturm–Liouville problems. These correction formulae bring the
order in k down from O(k4h2) to O(kh2). For multidimensional Schrödinger
equations, no such corrections are available, let alone for the extremely high
order schemes considered here.

Zero potential
- Besides the harmonic oscillator, it is also instructive to consider the problem
with a zero potential function on the domain Ω = [0, π]×[0, π] and homogeneous
Dirichlet boundary conditions. So, find all eigenvalues E for which there exists
an eigenfunction ψ(x, y) on the domain with ψ(x, y) = 0 on ∂Ω such that the
following holds:

−∇2ψ(x, y) = Eψ(x, y). (4.4)

By separation of variables, the exact solutions of this equation can be found:
ψi,j(x, y) = sin(ix) sin(jy) with eigenvalue λi,j = i2 + j2 for all i, j ∈ N+. The
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Figure 4.2: These graphs display the relative error of each of the first 100
eigenvalues of a Schrödinger problem with a zero potential on the rectangular
domain [0, π] × [0, π] with homogeneous Dirichlet boundary conditions (4.4).
This error is computed for different values of h = η and Nx = Ny. Repeated
eigenvalues are connected.
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first few of these eigenvalues are listed.

λ1,1 = 2 λ3,3 = 18 λ3,5 = λ5,3 = 34
λ1,2 = λ2,1 = 5 λ2,4 = λ4,2 = 20 λ1,6 = λ6,1 = 37

λ2,2 = 8 λ3,4 = λ4,3 = 25 λ2,6 = λ6,2 = 40
λ1,3 = λ3,1 = 10 λ1,5 = λ5,1 = 26 λ4,5 = λ5,4 = 41
λ2,3 = λ3,2 = 13 λ2,5 = λ5,2 = 29 λ3,6 = λ6,3 = 45
λ1,4 = λ4,1 = 17 λ4,4 = 32 λ1,7 = λ5,5 = λ7,1 = 50

In a certain way, these eigenvalues are more interesting than those from the
harmonic oscillator, as their multiplicities are less predictable.

In figure 4.2, the relative error in each of the first 100 eigenvalues is displayed
for different values of h = η and Nx = Ny. When comparing this figure to the
results of the harmonic oscillator 4.1, some striking differences can be seen.
Maybe most surprisingly, increasing the order does not give more accurate
results! For low eigenvalues, the method with Nx = Ny = 1 is most accurate,
this is simply the second order central finite difference formula. When using
higher order methods the error does not get any better than 2−8 ≈ 0.00391,
which is not at all as accurate as the results for the harmonic oscillator, where
the error for Nx = Ny = 5 lies between 2−32 ≈ 2.3 · 10−10 and at most
2−16 ≈ 1.5 · 10−5. This is quite disconcerting behavior for a numerical method
to have.

These results bring to light one of the biggest drawbacks of the method
from [102]. This method only works if it is assumed that the eigenfunctions
always are zero outside the domain. For the harmonic oscillator, this is the
case, as V (x, y) → +∞ if ∥x, y∥ → +∞. For the zero potential function, this
is definitely not the case as the eigenfunctions are periodic. One could argue
that, in theory, an eigenfunction may be anything outside the domain Ω. So
in particular, we could define them to be zero there. But, most numerical
methods, and this method in particular, assume that solutions are sufficiently
smooth. To cleanly define the problem, at least C2

0 (Ω) is needed. When using
N th order central finite difference schemes, CN0 (Ω) is implicitly assumed. And
this assumption fails if we define the function to be zero outside Ω.

To combat this issue, on the boundary of the domain asymmetric schemes
could be used, the authors of [102] did not do this. As an example, we have
tabulated all relevant seven-point formulae.
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c−3 c−2 c−1 c0 c1 c2 c3 c4 c5 error
1
90 − 3

20
3
2 − 49

18
3
2 − 3

20
1
90 O

(
h6)

− 13
180

19
15 − 7

3
10
9

1
12 − 1

15
1
90 O

(
h5)

137
180 − 49

60 − 17
12

47
18 − 19

12
31
60 − 13

180 O
(
h5)

There are two difficulties when using these formulae. First, to reach the required
order, one extra point should be used. And second, when using asymmetric
formulae, the matrix from (4.2) is no longer symmetric. In principle this should
not matter. In practice however, many sparse matrix eigenvalue solvers are
much more efficient when working with a real symmetric matrix.

4.1.1.2 Computational cost of the method

Finite differences are employed in many real-world applications, as they are
easy to implement, yet are able to reach high accuracies. In practice, it is rare
to encounter these very high orders. However, in this setting these high orders
seem to be very well applicable.

Yet, these finite difference methods are not without issues. One of the most
prominent drawbacks is the expensive computations involved. To get accurate
results, high orders combined with fine grids have to be used. This results in
huge sparse matrices. Only due to this sparsity are algorithms able to compute
the eigenvalues. Now, for higher order schemes, the matrices become less sparse,
and as such, more expensive to work with.

Alternatively, a method that is able to reduce the size of the matrices involved
without losing accuracy may be preferable.

4.2 Strands: A line-based collocation method
In contrast to the previous methods, we propose a technique which is not
necessarily restricted to cases where the domain is rectangular. So consider
a finite domain Ω ⊆ R2 on which we are searching for eigenvalues E ∈ R and
eigenfunctions ψ : Ω → R such that for a given potential V : Ω → R the
following holds

−∇2ψ + V (x, y)ψ = Eψ. (4.5)

Still, we impose homogeneous Dirichlet boundary conditions: ψ(x, y) = 0 for
(x, y) ∈ ∂Ω.
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yj−1

yj

yj+1

xi−1 xi xi+1

Ω

Figure 4.3: The grid used by Strands in section 4.2.

The main idea underlying this method is that we want to represent the eigen-
functions ψ efficiently. A fully discretized method may represent eigenfunctions
as its values on certain grid points. Our first attempt to develop a more
continuous approximation of the eigenfunction used ideas from chapter 3 and
led to the ideas for a new method, where we approximated the eigenfunction as
a linear combination of well-chosen basis functions on parallel lines throughout
the domain. This led to a continuous approximation along one direction and a
discrete approximation along the other direction of the domain.

In this section, we are going to construct a new method in which we will bring
this continuous approximation to both directions of the domain. For this, we
place a grid over the domain Ω, as can be seen in figure 4.3. This grid does not
need to be equidistant. When developing this new method, we strived to allow
for maximal flexibility, by avoiding as many restrictions on Ω as possible. This
has as consequence that, since Ω does not need to be a rectangle, the number
of intersections per grid line is not necessarily constant. Even worse, because
we do not even require Ω to be convex, the intersection of a grid line with Ω
may not be connected. Upon formulating and implementing this new method,
this varying number of intersections and these unconnected grid lines are some
examples of difficulties that arise by explicitly allowing more flexibility.

After placing the grid on Ω, the next step is to approximate the unknown
eigenfunction ψ as a linear combination of basis functions on each of the grid
lines. On the vertical line x = xi, we denote these basis functions as β(xi)

k (y),
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for each value of k. This yields the expression

ψ(xi, y) =
∞∑

k=0
c
(xi)
k β

(xi)
k (y). (4.6)

For horizontal lines y = yj , the basis functions β(yj)
k (x) yield a similar expression

ψ(x, yj) =
∞∑

k=0
c
(yj)
k β

(yj)
k (x). (4.7)

Notice that the domain of each of these β-functions is the intersection of its
corresponding grid line with Ω. As stated earlier, this domain may not be
connected. In theory this is not a problem, as long as the definition of β allows
this. Indeed, it will allow this. In practice, when one wants to implement this,
care has to be taken. It may be beneficial to construct multiple separate sets
of basis functions for each of the connected parts of the grid line. Because
the theory has no problem with non-connectedness, we will not burden the
notation and explanation with this separation into connected parts.

To ensure ψ(x, y) is uniquely defined in each point in Ω, we have to require
that in each intersection point (xi, yj), ψ(xi, yj) has only one solution:

ψ(xi, yj) =
∞∑

k=0
c
(xi)
k β

(xi)
k (yj) =

∞∑

k=0
c
(yj)
k β

(yj)
k (xi). (4.8)

Before deciding on which basis functions to use, let us consider the Schrödinger
equation (4.5) on each intersection point (xi, yj) with this new representation
of ψ:

−
∞∑

k=0
c
(xi)
k β

′′(xi)
k (yj) −

∞∑

k=0
c
(yj)
k β

′′(yj)
k (xi) + (V (xi, yj) − E)ψ(xi, yj) = 0.

This last formula suggests choosing β
(xi)
k and β

(yj)
k such that their second

derivative contains, in a certain sense, V (xi, yj). Together with the idea
from chapter 3 to use a one-dimensional Schrödinger equation, this leads us to
propose β(xi)

k to be the ordered eigenfunctions which satisfy the one-dimensional
Schrödinger equation

−β′′(xi)
k (y) + V (xi, y)

2 β
(xi)
k (y) = λ

(xi)
k β

(xi)
k (y)
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with homogeneous Dirichlet boundary conditions. The domain for this one-
dimensional problem is the intersection of the vertical line x = xi and the
two-dimensional domain Ω. Similarly, for the horizontal line y = yj , we propose
β

(yj)
k (x) to be the eigenfunctions of

−β′′(yj)
k (x) + V (x, yj)

2 β
(yj)
k (x) = λ

(yj)
k β

(yj)
k (x)

with homogeneous Dirichlet boundary conditions, and as domain the intersec-
tion of y = yj and Ω.

By choosing half the original potential in each of the approximations, in each
intersection (xi, yj), equation (4.5) simplifies, and V (x, y) disappears:

∞∑

k=0
λ

(xi)
k c

(xi)
k β

(xi)
k (yj) +

∞∑

k=0
λ

(yj)
k c

(yj)
k β

(yj)
k (xi) = Eψ(xi, yj). (4.9)

Notice that in this expression, only E (the eigenvalue), c(xi)
k and c

(yj)
k are

unknown, as ψ(xi, yj) depends linearly on c
(xi)
k and c

(yj)
k . So, expression (4.9)

is, in fact, a linear problem.

Before writing this as a matrix-problem, we first have to limit the range of the
sum. It is, of course, impossible to implement these formulae while the function
bases are still infinite. Therefore, we limit the basis on the line x = xi to the
first Kxi

functions and to the first Kyj
functions on the line y = yj . Notice

that the size of a basis on each line should not be greater than the number of
intersections on that line. If the basis size is too large, the system (4.8) will
be underdetermined. In this case, solutions no longer are uniquely defined,
which is a problem. In contrast, if the basis size is smaller, the system (4.8) is
overdetermined. This does not lead to issues, because we can reformulate it as
finding solutions in a least squares sense.

With these finite sums, equations (4.8) and (4.9) become, on the intersection
(xi, yj):

Kxi
−1∑

k=0
λ

(xi)
k c

(xi)
k β

(xi)
k (yj) +

Kyj
−1∑

k=0
λ

(yj)
k c

(yj)
k β

(yj)
k (xi)

= E

Kxi
−1∑

k=0
c
(xi)
k β

(xi)
k (yj) = E

Kyj
−1∑

k=0
c
(yj)
k β

(yj)
k (xi). (4.10)
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The introduction of appropriate vectors and matrices will allow us to trans-
late (4.10) into a matrix problem. The unknowns will be summarized into the
two vectors cx and cy, with sizes nx :=

∑
iKxi

and ny :=
∑
j Kyj

respectively:

cx =
(
c
(x0)
0 c

(x0)
1 · · · c

(x0)
Kx0 −1 c

(x1)
0 c

(x1)
1 · · ·

)⊺

and cy =
(
c
(y0)
0 c

(y0)
1 · · · c

(y0)
Ky0 −1 c

(y1)
0 c

(y1)
1 · · ·

)⊺
.

Furthermore, we introduce the nx × nx diagonal matrix Λx and the ny × ny
diagonal matrix Λy which contain the eigenvalues of the one-dimensional
Schrödinger problems used to define the basis functions:

Λx = diag
(
λ

(x0)
0 , λ

(x0)
1 , · · · , λ(x0)

Kx0 −1, λ
(x1)
0 , λ

(x1)
1 , · · ·

)

and Λy = diag
(
λ

(y0)
0 , λ

(y0)
1 , · · · , λ(y0)

Ky0 −1, λ
(y1)
0 , λ

(y1)
1 , · · ·

)
.

Last, we define the matrices that contain the values of the basis functions
in each of the grid points. For this, let us define m as the total number of
intersection points. Now, we define the m × nx matrix Bx and the m × ny
matrix By. Each row ri,j of these matrices corresponds to a grid point (xi, yj).
The non-zero entries on each of the rows ri,j of the matrices Bx and By can
be calculated as

(Bx)
ri,j ,o

(x)
i

+k = β
(xi)
k (yj) for k ∈ {0, 1, . . . ,Kxi

− 1}

and (By)
ri,j ,o

(y)
j

+k = β
(yj)
k (xi) for k ∈ {0, 1, . . . ,Kyi

− 1}. (4.11)

In this expression, the values o(x)
i and o

(y)
j are offsets depending on the row,

defined as: o(x)
i :=

∑
i′<iKxi′ and o

(y)
j :=

∑
j′<j Kyj′ . To aid an intuitive

understanding of the Bx and By matrices, figure 4.4 provides a schematic view
of them, calculated from a small numerical example.

As promised, these definitions allow us to rewrite the system (4.10) with m
equations more compactly as:

BxΛxcx + ByΛycy = EBxcx = EBycy. (4.12)

This formulation is not yet reminiscent of any classical linear algebra problem.
One of the unfamiliar parts of this expression is the fact that there are two
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Figure 4.4: The non-zero entries of the matrices Bx and By from equation (4.11)
are visualized. These were calculated on the problem from section 4.2.3.4 with
a 5 × 5 internal grid and Kxi = Kyj = 4 basis functions per line. In practice,
these matrices are much larger.
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vectors of unknowns. Another unfamiliar part is that (4.12) defines, in fact,
two different equations:

{
BxΛxcx + ByΛycy = EBxcx

Bxcx = Bycy.
(4.13)

There are a few strategies to further translate this problem into a form for
which efficiently implemented and well-studied algorithms exist. Ideally, the
solution would take the sparsity of the involved matrices into account.

4.2.1 Solving the matrix approximation
As a first strategy, we investigate how this problem can be directly transformed
into a standard mathematical problem.

4.2.1.1 Direct transformation into an eigenvalue problem

We tackle equation (4.13) by rewriting it as
{

BxΛxcx + ByΛycy = EBxcx

BxΛxcx + ByΛycy = EBycy.

This system can be seen as the following generalized rectangular eigenvalue
problem: (

BxΛx ByΛy
BxΛx ByΛy

)(
cx
cy

)
= E

(
Bx 0
0 By

)(
cx
cy

)
. (4.14)

At first glance, this may seem to enable us to solve the problem elegantly. But,
there are a few issues apparent with this translation. One of the most visible
problems is that we have translated this into a matrix problem which is twice
as large as the original matrices Bx and By in both rows and columns. On the
other hand, one can argue that the matrices are clearly sparse. The matrices
Bx and By are sparse indeed, but the problem is that there are few algorithms
available that are even able to solve a generalized rectangular eigenvalue
problem, let alone a sparse generalized rectangular eigenvalue problem.

Yet, a lack of sparse implementations does not deter us from trying out some
numerical experiments. In this first experiment, we will have to fall back to
algorithms working on dense matrices. Of course, the runtime will suffer, but
from a numerical point of view the results will still be valuable.
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Consider the Schrödinger equation with the harmonic oscillator potential:

−∇2ψ(x, y) +
(
x2 + y2)ψ(x, y) = Eψ(x, y)

on the domain [−9.5, 9.5] × [−9.5, 9.5] with homogeneous Dirichlet boundary
conditions2. We apply the described method on a grid with 30 lines in each
direction and 16 basis functions per line. This yields two 900 × 480 matrices
Bx and By. The rectangular problem from (4.14) has 1 800 equations and 960
variables. As this eigenvalue problem is heavily overdetermined, we have to
consider that solutions will only be accurate in a least squares sense. Much
research is already dedicated to solving this kind of problem. As such we will,
for now, use the first method from [40] to find solutions.

If we write equation (4.14) symbolically as Ac = EDc, and the thin singular
value decomposition3 of D as D = UDΣDVH

D, then any solution of (4.14) will
also be a solution of the generalized square eigenvalue problem

UH
DAVDv = EΣDv,

with c = VDv. Applying this method to the problem at hand yields 960
eigenvalues. First, it is important to remark that the resulting values are
elements of C. But, in this case, the imaginary part of all values lies between
−1.68 · 10−14 and 1.68 · 10−14, so all values may be considered real. The lowest
few values are given:

−2.85 · 10−14 . . . 5.39 · 10−14
︸ ︷︷ ︸

256 values close to zero

2.00 3.93 3.93 4.00 4.00 . . .

This can be more compactly summarized when the number of times an eigen-
value is (up to a precision of 10−6) repeated, is indicated by a subscript:

0.00256 2.00 3.932 4.002 5.362 6.003 6.782 6.872 8.004 . . .

One immediately notices the many returned zero values. Some of these can
be explained by the structure of the matrix on the left-hand size of (4.14).
This is a 2 · 900 × (480 + 480) matrix with repeated rows. The rank is thus
at most 900, which explains 960 − 900 = 60 zero eigenvalues. The others
are more difficult to explain, but suggestions can be found in the fact that
BxΛxcx and ByΛycy describe (up to a least squares approximation) the same

2We also considered this problem in section 4.1.1.1.
3A thin singular value decomposition of an m×n-matrix results in Σ being a square k× k

diagonal matrix, with k = min(m,n).
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points. So, cx and cy are not independent, which implies that the rank of
the matrix

(
BxΛx ByΛy

)
will probably not be maximal. But, these zero

eigenvalues indicate another problem. Namely, that for these values it is not at
all guaranteed that Bxcx = Bycy. So, these eigenvalues will be nonsensical in
the context of the original Schrödinger problem.

Remember that the true eigenvalues of the harmonic oscillator are 2, 4, 4, 6, 6,
6, 8, 8, 8, 8, . . . . And, we notice that these true values can indeed be found
in our solutions, but also many other values are present. Since the method
from [40] for solving generalized rectangular eigenvalue problems may return
more solutions than the original problem has, we still have to filter some out.
One way to only end up with true eigenvalues is by substituting them back
into the original problem (4.13) and verifying the residuals of both equations:

r1 =
∥∥∥∥BxΛxcx + ByΛycy − E

2 (Bxcx + Bycy)
∥∥∥∥ and r2 = ∥Bxcx − Bycy∥ .

The found possible eigenvalue with the lowest residuals r1 and r2 are also true
eigenvalues of the Schrödinger problem. When we sort all possibilities by their
first residual r1, we obtain the following table.

E 2.000 000 4.000 000 4.000 000 6.000 000 7.999 998
r1 1.5 · 10−5 4.7 · 10−4 4.7 · 10−4 4.9 · 10−4 5.0 · 10−3

r2 1.2 · 10−5 2.3 · 10−4 2.3 · 10−4 1.6 · 10−4 1.2 · 10−3

E 7.999 998 9.999 997 9.999 997 10.000 006 8.000 007
r1 5.0 · 10−3 6.6 · 10−3 6.7 · 10−3 1.0 · 10−2 1.4 · 10−2

r2 1.2 · 10−3 1.3 · 10−3 1.3 · 10−3 2.1 · 10−3 3.5 · 10−3

E 8.000 007 13.999 988 5.999 974 5.999 974 10.000 151
r1 1.4 · 10−2 1.9 · 10−2 3.8 · 10−2 3.8 · 10−2 4.8 · 10−2

r2 3.5 · 10−3 2.7 · 10−3 1.3 · 10−2 1.3 · 10−2 9.6 · 10−3

Here, we see that when the first residual r1 is low, the other is as well. Also, in
the first few eigenvalues, only true solutions are present.

Upon studying this direct method to solve the system of equations (4.13), we
have noticed some drawbacks. First, the proposed system (4.14) is, in a certain
sense, twice as large as the discrete problem we started from. Eigenvalue
algorithms are at least cubic in complexity. So, this doubling in size implies an
eightfold runtime penalty. Second, and numerically interesting, we obtain many
more ‘solutions’ than the ones we are looking for. Each generalized eigenvalue,
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with its eigenvector, has to be computed and checked against the residuals.
This will throw away many eigenvalues.

4.2.1.2 Restriction to a null space

One improvement we can make to decrease the runtime is by not solving a
system that is twice as large, but by solving two smaller systems. Furthermore,
instead of ending up with too many eigenvalues and trying to filter out the
wrong ones, we have devised a way to, a priori, limit the number of solutions.
The idea here is that, before solving an eigenvalue problem, we solve the second
equation of (4.13) and only take those solutions into account.

The first equation resembles a generalized rectangular eigenvalue problem, the
second is a classical linear system. Let us only consider nx + ny dimensional
vectors c =

(
cx

⊺ cy
⊺
)⊺ which solve

(
Bx −By

)
c = 0.

This allows us to unify cx and cy, while ensuring Bxcx = Bycy is satisfied.
To expand on this idea, we will write c to be an element of the right kernel of(
Bx −By

)
. For this, we define the columns of the (nx + ny) × z matrix Z to

be a basis of this right kernel:
(
Bx −By

)
Z = 0. (4.15)

Computing this kernel numerically is definitely not trivial. For rectangular
matrices, there are a few well-known methods to compute the kernel. In the
next paragraphs we will explore these methods and consider how well they are
suited for our problem. For ease of notation we will be solving the rectangular
system AZ = 0 with A a (sparse) m× n matrix and Z a yet unknown n× z
matrix, whose columns are a basis for the right null space of A.

Finding the null space of a matrix
One of the first methods for finding the null space of a matrix one finds when
browsing the literature is by computing its singular value decomposition. For
extended background about using a singular value decomposition for null space
construction, we refer to [32, section 2.4]. In this book the following theorem
can be found.

Theorem 4.1. Let A ∈ Rm×n be a real m × n matrix with singular value
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decomposition4

A = UΣV⊺,

and ordered singular values σ1 ≥ σ2 ≥ · · · ≥ σp with p = min(m,n). If A has
r positive singular values, then5 rank(A) = r and

null(A) = span{vr+1, . . . ,vn},
ran(A) = span{u1, . . . ,ur},

with ui the ith column of U, analogous vi the ith column of V.

The singular value decomposition gives us a constructive way to find a basis
of the null space of a matrix A. For dense matrices this works very well, but
is computationally quite expensive. For sparse matrices the story is more
complicated. There are many available routines for calculating singular value
decompositions. Some of them are constructed specifically for computing the
singular value decomposition, others are adapted from symmetric eigenvalue
solvers on the matrix A⊺A or on AA⊺, whichever is more efficient, for ex-
ample: SLEPc [38], spectra [82] or SciPy [101] with ARPACK [70]. We have
experimented with many solvers. One of the first difficulties is that all of them
require specifying beforehand how many singular values are required. In our
case, the dimension of the null space is unknown, so it is impossible to exactly
specify this. The solver which seemed most promising to combat this issue was
SLEPc. There, one can instruct the solver to continue to find eigenvalues as long
as a custom condition is not met. In our case, we could provide that as long as
the singular values are close to zero that then the search should continue. But,
on the other hand, the algorithms used there are using a small-dimensional
subspace in which convergence to the eigenvectors happens. This space should
at least have as many dimensions as the number of eigenvalues required, and
has to be specified beforehand. As noted previously, in our case, this is difficult.
But, even ignoring this complication, and just specifying a sufficiently high
number of required singular values, did not solve it either. All algorithms had
trouble to reliably converge to the required number of singular values. In the
simplest test problem, the best results we were able to obtain this way were a
few dozen of the smallest singular values, when we required a few hundred.

4In this expression the matrix U (V respectively) are orthogonal m×m (n×n respectively)
matrices. Σ is a diagonal m × n matrix with the ordered singular values on the diagonal:
σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n).

5The null space null(A) of A is the vector space of all vectors x for which Ax = 0. The
range ran(A) is the vector space of all vectors y such that there exists a vector x such that
Ax = y
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Another popular method [96] to find the null space of a matrix is by using a
QR-decomposition with pivoting. For this we decompose the m × n matrix
A as A⊺E = QR, with E an m×m permutation matrix, Q a square n× n
orthogonal matrix and R an n×m rectangular upper triangular matrix, with
the elements on its diagonal sorted (descending in absolute value). To find
the kernel, we now consider for which vectors z the expression Az = ER⊺Q⊺z
becomes zero. Notice that this only happens when z is in the linear span of the
columns of Q corresponding to a diagonal item in R that is (close to) zero and,
if n > m the last n−m columns of Q. So an orthogonal basis of the null space
of A can be found in a selection of columns of Q in the QR-decomposition
of A⊺. For dense matrices this procedure also works very well. We can quite
easily compute the full kernel with built-in QR routines. Upon selecting which
columns to include, the diagonal elements of R can even be used to take into
account a prespecified tolerance. It is also valuable to notice that computing a
QR-decomposition is significantly more efficient than finding all singular values.
So, for dense matrices, this second method is preferred. But for sparse matrices,
the story is, again, quite different. There are many well-tested routines to
compute a sparse QR-decomposition, for example SuiteSparseQR [25] and
Eigen’s QR [33]. Yet, we have tested this algorithm with both solvers, without
success. Eigen does not contain a rank revealing sparse QR-decomposition,
and as such is unable to compute the full kernel. SuiteSparseQR, on the other
hand, was sometimes able to compute the kernel, but this computation was
each time very sensitive to the tolerance of when to pivot and which columns
of Q to include. Even worse, the perfect ‘tolerance’ was different for each test
problem, or even for the same problem with different parameters.

Solving the matrix approximation
In conclusion, coming back to equation (4.15), for now we will ignore the
sparsity present and use the algorithm for the dense QR-decomposition from
Eigen [33].

The vector c can now be written as a linear combination of columns of Z:

c =
(

cx
cy

)
=
(

Zx
Zy

)
u = Zu.

Another benefit of considering Zu, besides only considering solutions of Bxcx =
Bycy, is that we unified the two vectors of unknowns cx and cy into one (much)
smaller vector u. This simplifies the two problems of equation (4.13) into

(
BxΛx ByΛx

)
Zu = EBxZxu = EByZyu.
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For the right-hand side, by construction BxZx = ByZy. Now, this problem
has become a generalized rectangular eigenvalue problem.

As stated in section 4.2.1.1, only few implementations to solve these matrix
problems are available. In our first tests we have found the first method
from [40] to be sufficient.

If Bx and By are viewed as dense matrices, this technique for solving (4.13)
works well. The correct eigenvalues are found within reasonable computation
time.

If relatively high accuracies are required, the used grid size should be increased.
This also has a significant impact on the size of the involved matrices. As these
become larger, using their sparsity becomes a necessity. This is where both of
the previous techniques to solve (4.13) fall short. There, existing algorithms for
sparse matrices were not able to perform the required computations efficiently
and accurately. To combat this, we have developed an alternative method,
explicitly tuned to be able to use the sparsity of the matrices.

4.2.1.3 Least squares approximation

We start with the observation that classical matrix problems normally do not
contain two vectors of unknowns. So, we need a way to unify them. With
the previous technique we considered vectors in the right kernel of a given
matrix. We have discovered that this is surprisingly difficult to compute, while
respecting the sparsity of the matrices involved. As an alternative to unify
cx and cy, one could fix cx and compute cy as the least-squares solution
of Bxcx = Bycy. Or, the other way around, fix cy and compute cx. Both
seem like artificial asymmetric choices. Therefore, we propose to find an m-
dimensional vector z, such that cx and cy can be calculated as least square
solutions of Bxcx = Bycy = z. With normal equations, we can define this
more formally as

cx = (B⊺
xBx)−1 B⊺

xz

and cy =
(
B⊺

yBy
)−1 B⊺

yz.

Notice that the computation of (B⊺
xBx)−1 is not at all as difficult as this may

seem: Bx is a block diagonal matrix. So, these computations, calculating an
inverse or multiplying with another block diagonal matrix, can be done for
each of the much smaller dense subblocks on the diagonal. From figure 4.4, we
know that the matrix By is not block diagonal. But, if we apply an appropriate
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m×m permutation matrix P we can obtain that B̃y := PBy is, in fact, also a
block diagonal matrix. So, the computation of cy can be written as:

cy =
(

B̃⊺
yB̃y

)−1
B̃⊺

yPz.

And again, as the involved matrices (except P) are block diagonal, all compu-
tation can be delegated to the much smaller dense subblocks of B̃y.

Numerically, directly computing inverse matrices should be avoided. Therefore,
we compute the matrix Zx := (B⊺

xBx)−1 B⊺
x as the least squares solution of

BxZx = Im×m, and analogous for Zy = (B̃⊺
yB̃y)−1B̃⊺

y. And again, all these
computations can be executed on each of much smaller dense diagonal blocks.

The expressions for cx and cy now allow us to rewrite the first equation of (4.13)
into (

BxΛxZx + P⊺B̃yΛyZyP
)

z = Ez. (4.16)

This problem is a classical square non-symmetric sparse eigenvalue problem.
The main reason we developed this technique is that many well-tested extremely-
efficient sparse eigenvalue solvers exist. Before declaring this technique as
superior, there is still one issue left to solve. Up until now, we have ignored
that Bxcx = Bycy should hold. So one way to ensure this, is by checking that
each eigenvector z of (4.16) satisfies (up to the required tolerance)

Zxz − ZyPz = 0. (4.17)

Surprisingly, some sparse eigenproblem solvers allow us to do something more
efficient. SLEPc [38] for example, allows one to provide a deflation space.
When this is provided, the eigensolver restricts solutions to the orthogonal
complement of the deflation space. This functionality exists to allow users to
continue an eigenvalue search, by only seeking solutions orthogonal to earlier
seen eigenvectors. Or, a user may provide the null space of the matrix to
exclude all zero eigenvalues.

Constructing a deflation space
In our case, this feature can be used with the span of the rows of Zx − ZyP as
deflation space. Then, only solutions will be considered which satisfy (4.17).
While implementing and testing, we have found that the algorithms within
SLEPc have trouble converging to the low end of the spectrum of the matrix
from (4.16). One of the issues SLEPc encounters is that the matrix is highly
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singular. The employed algorithms for finding the low end of the spectrum
are advanced adaptations of inverse power iterations. Therefore, during the
execution many linear systems will be solved with our singular matrix. To
solve these systems, they are using an LU-decomposition of the matrix in
question. And, this decomposition is not rank-revealing and has issues with
the singularity of the matrix. The developers of SLEPc propose that a user
should use a different, external, linear solver. Or, one could compute the null
space independently and provide the results as the deflation space.

Using an external solver is definitely not an attractive solution. Besides the
difficulties of finding such a solver in the first place, or getting it to work together
with SLEPc and Eigen (which we are already using), numerically we can do
better. As most of the null space of the matrix in (4.16) is irrelevant for the
original Schrödinger problem we are trying to solve, it would be advantageous
to be able to exclude this null space before searching for eigenvalues. Trying to
numerically compute this null space, is reminiscent of the analysis we have made
in section 4.2.1.2. There we came to the conclusion that an implementation
which takes the sparsity into account is truly difficult to get working. Therefore,
we would prefer a theoretical analysis which provides a sufficiently large null
space, such that SLEPc converges, even when searching for the low end of the
spectrum.

The first step is to investigate where this singularity comes from. We can use
the degrees of freedom as a guide. Initially, we were looking for many linear
combinations of basis functions, contained within the nx-dimensional vector
cx and the ny-dimensional vector cy. So the number of degrees of freedom,
ignoring the constraints Bxcx = Bycy, starts of at nx+ny. To unify these two
vectors, we have introduced z in (4.16). This z has m rows. In principle, m
has nothing to do with our initial degrees of freedom nx and ny. So, there will
be choices for z which imply that the corresponding cx = Zxz or cy = ZyPz
are zero. So the null space of the right-hand side of (4.16) can be in large part
found in the null spaces of Zx and ZyP. Luckily for us, the null spaces for these
last matrices can be easily computed. These matrices are block diagonal. This
means that we can find their null spaces by computing the null space of each
of the dense subblocks, for which Eigen provides many well-tested algorithms.
In our case, a dense QR-decomposition with column pivoting suffices.

With these null spaces in hand, it is still not as easy as adding them to the
deflation space with SLEPc. For this library, it is not necessary that the
vectors in the deflation space are orthogonal, as they orthogonalize the space
themselves by a Gram–Schmidt-like procedure. The user manual of SLEPc does
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not mention this, but this procedure assumes that no redundant vectors are
given in the deflation space. If we add all basis vectors from the null spaces
of Zx and ZyP to the deflation space, SLEPc throws an error indicating that
the whole space is spanned by the deflation space, which should not be the
case. The two null spaces we are considering do intersect. By adding all their
basis vectors, SLEPc will force all these vectors to be orthogonal. Because of
numerical approximation errors, some of these resulting vectors will no longer
lay in any of the null spaces, but in a random direction. So instead of adding
all basis vectors directly, we will first construct an orthogonal basis of the
intended deflation space. This new basis can be found as the columns of the
Q-matrix in the QR-decomposition of the matrix with as columns the basis
vectors from Zx and ZyP.

We are finally able to request the low end of the spectrum of the right-hand
side of (4.16). And the numerical results are promising! However, we noticed
that this sparse technique is significantly slower than the dense implementation
from 4.2.1.2.

We suspect the reason for this slowness to be due to the computation of
the smaller basis with the QR-decomposition. Even with using a sparse QR-
decomposition, this still takes a significant amount of runtime. Besides this,
there is also a more implementation specific time sink: one can provide the
deflation space in SLEPc as a list of vectors. In this library all vectors are
dense. With the large deflation space we are using, this results in many dense
vector operations on this huge list of dense vectors. This defeats our goal of
maximally using the sparsity of the system. We did not find another library
that supports deflation spaces, let alone sparse deflation spaces. But even if we
would have, this still would not have worked. After the QR-decomposition, the
vectors from our new basis for the deflation space are dense. This inherently
slows everything down.

Using deflation gave promising numerical results, but due to implementation
drawbacks it was still too slow. But, fortunately, we are able to add deflation to
any eigenvalue problem, even if the solver does not support it. In the literature
there are a few techniques available [87, section 4.2][73]. The ideas that are
used for sparse problems mostly involve ensuring that all vectors from the
deflation space have eigenvalue zero. This makes sure that iterative schemes,
like power iteration or (restarted) Arnoldi iteration [6][96, Chapter 6], never
find eigenvectors contained within the deflation space.
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Solving the square eigenvalue problem
To solve (4.16), a matrix-free eigenvalue solver6 can be used (e.g. [70, 38, 82]).
In our implementation we have chosen for spectra [82], which is an implicitly
restarted Arnoldi method. Since we are only interested in the lowest lying
real eigenvalues, we will use a lower bound of the ground state as a shift to
make the interesting eigenvalues strictly positive. A simple choice for this shift
is σ = minx∈Ω V (x). Now the values we are interested in are the smallest
positive real eigenvalues of A − σI. For finding these, there are two possible
strategies. First, most eigenvalue solvers allow users to specify which values
to select, the largest negative real values for example. All solvers are best
at finding the outer boundaries of the spectrum. However, some also allow
selecting values deep inside the spectrum, like the small positive reals, with the
caveat that convergence may suffer. On the other hand, we could also search
for the largest positive real eigenvalues of the matrix (A − σI)−1. In this case,
the convergence will be better, but the runtime may suffer due to the needed
linear solves, for example with an LU-decomposition.

In any case, we want to exclude the null spaces of Zx and ZyP to be considered.
Let the columns of Kx be a basis of the null space of Zx and the columns of
Ky a basis of the null space of ZyP. Following [87, 73], let us define D :=
(I − KyKy

⊺) (I − KxKx
⊺) as what we call the deflation matrix. Applying this

operator D to any vector orthogonally projects it out of the null spaces to
their orthogonal complement. We need to ensure that the operator of which
we are searching eigenvalues only returns vectors which are orthogonal to the
unwanted space. On the other hand, we also want to ensure that when solving
linear systems, the incoming vectors are orthogonal to the null space. With
this in mind, we propose to find the smallest real strictly positive eigenvalues of

D (A − σI) D

or the largest real positive eigenvalues of

D (A − σI)−1 D. (4.18)

In practice, it is important to note that this product most likely will be a
dense matrix. When using a matrix-free sparse eigenvalue solver this can

6A classical (dense) eigenvalue solver assumes the problem is given as Ax = λx with A a
matrix. For sparse problems, constructing the matrix A explicitly may be inefficient or may
introduce unwanted dense matrices. For example, if A is the product of two sparse matrices,
in general this will itself not be as sparse. To combat this, many solvers implement what
is called a matrix-free operation. Here, the user provides the linear operator L to find the
eigenvalues of as a function: L : Rn → Rn : x → L(x). So there is no need to construct any
matrix at all.
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be implemented as a few sparse matrix-vector products, which is much more
efficient. As an example, the pseudocode for finding eigenvalues with the
operation from equation (4.18) can be found in algorithm 1.

Algorithm 1 The pseudocode of the algorithm to apply projection deflation
with a matrix-free eigenvalue solver in shift-invert mode, see equation (4.18).

Compute the sparse LU decomposition of A − σI

function ApplyMatrix(vector v, result r)
u = (I − KyKy

⊺) (I − KxKx
⊺) v

Use LU-decomposition to solve (A − σI) x = u for x.
r = (I − KyKy

⊺) (I − KxKx
⊺) x

end function

eigenvalueSolver(ApplyMatrix) ▷ Call matrix-free eigensolver library

In section 4.2.4, we will take a closer look at how both solving strategies
perform.

In summary, we have studied three techniques to solve (4.13). With all three
techniques, we were able to approximate the sought eigenvalues. However, only
with the last technique, we were able to build a sparse implementation. This
method is significantly faster than the other two, without loosing any accuracy.

Before performing some numerical experiments in section 4.2.3, we will develop
in the next section a method to evaluate the found eigenfunctions in arbitrary
points.

4.2.2 Computing eigenfunctions
This new method is able to compute eigenvalues of Schrödinger equations
efficiently and accurately. One of the disadvantages of many simpler numerical
schemes is their inability to evaluate eigenfunctions. The method from [102],
for example, provides an approximation to the value of the eigenfunctions in a
finite number of fixed evaluation points. The eigenfunction is only known in the
grid points used to construct the matrix problem. For us, this is unsatisfactory.

In recent years, we have focused upon accurately computing eigenfunctions in
arbitrary points. If we look back at the one-dimensional case for a moment,
we see that in Matslise 2.0 [68] it was possible to compute eigenfunctions.
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However, each of the required evaluation points needed to be specified before-
hand. Also, when requesting the value of the eigenfunction in many points,
the runtime increased dramatically. Only in our work from chapter 2 and [9],
we were able to build an algorithm which could compute the value of the
eigenfunction in many points efficiently. These points did not need to be
specified beforehand. In a more technical sense, when eigenfunctions are re-
quested, Matslise 3.0 returns a function, not just a grid of values. This has
many benefits: first, Matslise 3.0 may decide its own step size, based upon
the required accuracy and jumps in the domain, without taking a ridiculous
amount of steps, even if we want to evaluate the eigenfunction in many points.
Second, besides these clear efficiency gains, doing computations with these
eigenfunctions becomes a lot more user-friendly. Many numerical procedures
are adaptive, for example ODE-solvers with adaptive step size, based upon an
error estimate. Similarly, the computation of a numerical quadrature is ideally
done with adaptive formulae to get a grip on the error of the result. When
using these adaptive procedures it is not known beforehand which values of the
involved functions will be required. Therefore, we strived to build the dynamic
computation of eigenfunctions into the core of our algorithms.

In our own work, see [8] or chapter 3 or even this chapter, we already benefited
immensely from the ability to compute eigenfunctions efficiently in arbitrary
points. Of course, we want to build this feature also into the new method
developed in this section.

This new method provides not only the eigenvalues but also the corresponding
vector cx and cy, containing each of the values c(xi)

k and c(yj)
k , for each i, j and

k. These can be used to reconstruct the two-dimensional eigenfunction ψ(x, y)
on each of the grid lines (see also equations (4.6) and (4.7)):

ψ(xi, y) =
∞∑

k=0
c
(xi)
k β

(xi)
k (y)

and ψ(x, yj) =
∞∑

k=0
c
(yj)
k β

(yj)
k (x).

Because β(xi)
k and β

(yj)
k are computed with Matslise 3.0, these functions can

be cheaply evaluated in any point. This means, visually, that the value of the
two-dimensional eigenfunction can be calculated on each of the horizontal and
vertical lines of figure 4.3.

Almost all points in the domain Ω are not contained on any of these lines. It is
not trivial how one would reconstruct the eigenfunction ψ(x, y) in such a general
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?

Figure 4.5: On the left: a closer look at an internal rectangle from figure 4.3.
On the right: the points calculated with a small finite difference approximation.

point, from the results cx and cy from the matrix problem. Let us simplify the
problem by only considering a rectangle between two consecutive grid lines,
in both the x- and y-direction. The left side of figure 4.5 contains such a
single rectangle. The issue now is: how do we reconstruct the eigenfunction
on this rectangle, given its value on the whole boundary? Since we have to
approximate an unknown function, given the values on a fixed number of
points, interpolation comes to mind. As a first idea, we have tried building a
polynomial basis to interpolate the eigenfunction with nodes on the boundary
of such a rectangle.

The most natural k-degree polynomial basis to consider are the monomials
xiyj for all i, j with i+ j ≤ k. For k = 4, for example, this yields:

1, y, y2, y3, y4, x, xy, xy2, xy3, x2, x2y, x2y2, x3, x3y and x4.

This basis already highlights one of the fundamental issues with this approach.
In figure 4.6, two different linear combinations of basis functions are plotted:
x2 + y2 − 1 and x2y2. Clearly, these functions are different. Yet, their values on
the boundary of the unit square are identical. This indicates that it will not be
possible to reconstruct the eigenfunction by using polynomial basis functions
based upon values from the boundary alone.

To be able to calculate an interpolating polynomial uniquely, we also require
values in the interior of the domain. The vectors cx or cy provide the value of
the eigenfunction on the boundary of the small internal rectangle. They tell
us nothing about the value of the eigenfunction in the interior. But, on this
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Figure 4.6: Two different fourth degree polynomial functions with the same
value on the boundary of the region [−1, 1] × [−1, 1].

internal rectangle Ωi,j = [xi, xi+1] × [yj , yj+1] we know that the eigenfunction
ψ(x, y) satisfies the equation

−∇2ψ(x, y) + V (x, y)ψ(x, y) = Eψ(x, y) (4.19)

with E fixed and boundary conditions:

ψ(xi, y) =
∞∑

k=0
c
(xi)
k β

(xi)
k (y),

ψ(xi+1, y) =
∞∑

k=0
c
(xi+1)
k β

(xi+1)
k (y),

ψ(x, yj) =
∞∑

k=0
c
(yj)
k β

(yj)
k (x)

and ψ(x, yj+1) =
∞∑

k=0
c
(yj+1)
k β

(yj+1)
k (x).

Using this, we place a K ×K grid on this small rectangular domain Ωi,j , as
in the right-hand side of figure 4.5. The grid points can now be described
as xi = x

(i)
0 , x(i)

1 , . . . , x(i)
m , . . . , x(i)

K = xi+1, and analogous for y: yj = y
(j)
0 ,
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y
(j)
1 , . . . , y(j)

n , . . . , y(j)
K = yj+1. This allows the eigenfunction ψ(x, y) to be

approximated in each of these points by:

ψ(i,j)
m,n ≈ ψ(x(i)

m , y(j)
n ) for each m,n ∈ {0, 1, . . . ,K}.

With this notation in hand, equation 4.19 can be approximated in each grid point
by a finite difference approximation. Because Ωi,j is only a small part of the total
domain Ω, the grid size K may be chosen relatively small, without a penalty
on accuracy. In our case, we found that fixing K = 4 gives satisfactory results,
without too much computational overhead. So for the following discussion
about a finite difference approximation on Ωi,j , we assume K = 4.

Because only a relatively small grid is used, the finite difference scheme should
be as accurate as possible, without making any assumptions on points out-
side Ωi,j . Denote by f ′′

0 the value we want to approximate on an equidistant
grid with step size h, on which the function in question takes the values
. . . , f−2, f−1, f0, f1, f2, . . . around the central point. The finite difference ap-
proximation can be written as

f ′′
0 ≈

b∑

i=a

αi
h2 fi,

with appropriate choices for a and b such that each fi lies within the grid of
approximations. The relevant five-point formulae we will be using are provided
in the following table.

α−3 α−2 α−1 α0 α1 α2 α3
11
12

−5
3

1
2

1
3

−1
12

−1
12

4
3

−5
2

4
3

−1
12

−1
12

1
3

1
2

−5
3

11
12

Let us, for ease of notation, summarize these values into the following matrix:

D =




0 0 0 0 0
11
12

−5
3

1
2

1
3

−1
12

−1
12

4
3

−5
2

4
3

−1
12

−1
12

1
3

1
2

−5
3

11
12

0 0 0 0 0




.

With this finite difference approximation (4.19) can now be approximated as a
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nine-dimensional linear system with for each m,n ∈ {1, 2, 3}:




...
4∑

l=0

Dm,l

∆x2
i

ψ
(i,j)
l,n +

4∑

l=0

Dn,l

∆y2
j

ψ
(i,j)
m,l =

(
V (x(i)

m , y(j)
n ) − E

)
ψ(i,j)
m,n

...

The nine unknown variables are ψ(i,j)
m,n for m,n ∈ {1, 2, 3}. The step sizes ∆xi

and ∆xj are defined as (xi+1 − xi) /K and (yi+1 − yi) /K respectively. Notice
that for all m,n ∈ {0, 1, . . . ,K}, if any of m,n ∈ {0, 4}, the values ψ(i,j)

m,n are
known, as they can be computed as the boundary values.

This relatively small linear system can now be numerically solved to obtain
values of the eigenfunction within the small rectangle Ωi,j . On the right-hand
side of figure 4.5, all red dots are now computed values and can be used
to construct a polynomial interpolant. As a basis, we have chosen the 25
monomials xiyj for all i, j ∈ {0, 1, 2, 3, 4}.

4.2.3 Numerical experiments
When developing a new method, it needs to be tested thoroughly. This
inescapably means that the program should be run on many problems with a
wide variety of settings. Doing this methodically and consistently after code
changes can be a cumbersome task. Being aware of this, we have from the
very first versions onwards included many automatic tests. On every code
change, these tests would run on all supported platforms (Linux, Windows and
macOS) to verify that our changes still produce sufficiently accurate results
for the considered problems. For the development of this new method we
continuously test the time-independent two-dimensional Schrödinger problems
with the following potential: the harmonic oscillator potential (section 4.2.3.1),
the Hénon–Heiles potential (section 4.2.3.3) and the quartic oscillator potential.
All these problems are tested on simple rectangular domains. The Schrödinger
problem with zero potential (4.2.3.2) is tested on a rectangular as well as a
circular domain. The Schrödinger problem with Ixaru’s potential is tested
on a rectangle, a disc and a 45° rotated rectangle. All tests are conducted
in double-precision and most problems are also tested in de extended long
double datatype.

These automated tests are extremely valuable during development to quickly
notice regressions, as also mentioned in section 2.6.1.4. But for a thorough
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mathematical analysis, more work is required. In this section we will provide
many graphs and figures to evaluate the accuracy of our method. The evaluation
of the runtime performance is another can of worms which will be treated in
section 4.2.4.

Our implementation is built in C++ using Eigen [33] for linear algebra with
spectra [82] as a matrix-free eigenvalue solver, and Matslise 3.0 (see chapter 2
or [9]) for the computation of one-dimensional basis functions. Installation is
possible through python’s package system pip.

1 pip install strands

As a user guide, we provide for all numerical experiments a Python program
with which a reader can replicate the experiments on their own computer.

4.2.3.1 Harmonic oscillator potential

Following section 4.1.1.1, the first example we will consider is the harmonic
oscillator with equation

−∇2ψ(x, y) +
(
x2 + y2)ψ(x, y) = Eψ(x, y) (4.20)

on the domain [−9.5, 9.5] × [−9.5, 9.5] with homogeneous Dirichlet boundary
conditions.

Using Strands, the first ten eigenvalues of this problem can be found within a
second with the following code.

1 from strands import Schrodinger2D, Rectangle
2

3 schrodinger = Schrodinger2D(
4 lambda x, y: x*x + y*y, Rectangle(-9.5, 9.5, -9.5, 9.5),
5 gridSize=(40, 40), maxBasisSize=30)
6 print(schrodinger.eigenvalues(10))

In our algorithm, there are two main variables to experiment with. The first,
most obvious one, is the density of the used grid. Our grid density is similar to
the step size that is used by the finite difference approximation of section 4.1.1.
In our method, the size of the involved matrices, and thus the runtime, is
directly proportional to the total number of grid points. Being able to use a
less dense grid would therefore bring a significant computational benefit to the
table.
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Figure 4.7: These graphs display the relative error of each of the first
100 eigenvalues of the harmonic oscillator (4.20) on a rectangular domain
[−9.5, 9.5] × [−9.5, 9.5], computed for different grid sizes N and basis sizes K.
Repeated eigenvalues are connected.
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The second parameter we can tweak is the number of basis functions on each
of the grid lines. On each grid line, in both directions, Matslise needs to
compute these basis functions. This computation requires, of course, a part of
the runtime.

In a very crude analysis, we can take a look at the computational complexity of
the most relevant operations. Assume there are N grid lines in both directions.
This yields N2 grid points, and 2N grid lines. On each of these lines we
compute K ≤ N basis functions, thus the computational overhead of the many
one-dimensional problems is O(KN). For the computation of the eigenvalues of
the two-dimensional problem, the analysis is more nuanced. Finding accurate
and reliable complexity estimates is more difficult than one would expect. The
restarted Arnoldi procedure (without shift-invert), has a complexity of O(k2n)
when k eigenvalues are requested for a sufficiently sparse n × n matrix [69].
If the linear operator has a dense operation, this dominates the complexity
O(kn2). In our case, we support a shift-invert scheme. In this scheme, solving
the sparse system is definitely something to take into account. Eigen’s built-in
methods are based upon techniques from SuperLU [26, 71]. In the performance
analysis of this software, the authors provide a detailed overview of which
properties have an impact on performance. An important property, which
contributes to the runtime, is the structure of the matrix. If the non-zero
elements of the involved matrix are situated so that the algorithm can exploit
it, it helps to reduce the computational cost. It is not known whether our
matrix has an exploitable structure or not. It would be surprising if our matrix
had the perfect structure, independent of the size and shape of the domain.

In summary, a first complexity analysis of our method indicates that the one-
dimensional problems have a complexity of O(KN) and solving the matrix
eigenvalue problem has a complexity of at least O(kN2). One has to be wary to
only rely on a theoretical analysis to conclude that solving the one-dimensional
problems has a negligible computational cost. In section 4.2.4, we will conduct
a thorough analysis of the runtime of our method. For now, we will focus on
numerical accuracy.

Figure 4.7 contains three graphs illustrating how the two main variables (grid
size and basis size) work together to obtain accurate results. For this figure
three different basis sizes were considered K = 16, K = 32 and K = 48. As
grid sizes we have chosen N = 32, N = 48 and N = 64. Notice that N = 32
and K = 48 was omitted from the figure as these give exactly the same results
as N = 32 and K = 32, due to the limitation that the number of basis functions
can never exceed the number of grid points on the relevant grid line.
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When comparing figure 4.7 with figure 4.1, we notice that our new method is able
to reach the same accuracy with only a grid size of 48 (with 48 basis functions).
This is considerably less than the required grid size of 100 with spacing h = 0.19
when using the finite difference scheme. As a direct comparison, our method
was solving a 2304 × 2304 sparse eigenvalue problem (from equation 4.16),
while the method with finite difference approximation needed to solve a sparse
9801 × 9801 eigenvalue problem (from equation 4.2).

As a second, highly related experiment we consider the harmonic oscillator
problem (equation (4.20)) on a circular domain around (0, 0) with radius 9.5.
In principle, this is the same problem as before. But in practice, solving
Schrödinger problems on non-rectangular domains was not at all possible with
other grid-based methods. The following code solves this problem on a circular
domain.

1 from strands import Schrodinger2D, Circle
2

3 schrodinger = Schrodinger2D(
4 lambda x, y: x * x + y * y, Circle((0, 0), 9.5),
5 gridSize=(40, 40), maxBasisSize=30)
6 print(schrodinger.eigenvalues(10))

Within a second, the first ten eigenvalues of this problem are printed, accurate
to about 10−13.

Since we have constructed this method with non-rectangular domains in mind,
our program is able to tackle these more exotic problems. For this problem,
figure 4.8 answers the most important question: are the results accurate? The
graphs displayed are calculated in the same way as figure 4.7. Three different
grid sizes and three different maximal basis sizes are considered. Notice that
we used the term maximal basis size. For non-rectangular domains the number
of grid points per grid line varies. Grid lines close to the boundary are short
chords containing only a few grid points. As the number of points limits the
size of the basis, this size has to vary as well. For our algorithm, it is still
valuable to place an upper bound on the basis size, especially for those lines
that run through the middle of the domain, containing many grid points.

The results of figure 4.8 are eerily similar to those of figure 4.7. For the
harmonic oscillator the domain seems to have no effect on the accuracy of the
method. This can be explained by the fact that for all eigenfunctions f(x):
lim∥x∥→+∞ f(x) = 0. As a consequence, this means that once the domain
is sufficiently large the boundary, and corresponding boundary conditions,
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Figure 4.8: These graphs display the relative error of each of the first 100
eigenvalues of the harmonic oscillator (4.20) on the disc around 0 with radius
9.5, computed for different grid sizes N and maximal basis sizes K ≤ N .
Repeated eigenvalues are connected.
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Figure 4.9: Left: four eigenfunctions with the same eigenvalue of the harmonic
oscillator on the rectangular domain [−5, 5]. Right: the corresponding eigen-
functions on the circular domain with radius 5. Middle: linear combinations of
the left eigenfunctions are chosen such that they equal the right eigenfunctions.
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become less and less important. One of the great benefits of considering this
circular domain is its size. For example, if N = 64 the rectangular domain has
4096 grid points. The circular domain on the other hand, only has 3300 grid
points. This reduction in grid points makes the involved matrices smaller, and
therefore reduces the computational cost.

As a last visual experiment with the harmonic oscillator, we will take a look at
the eigenfunctions. As a reminder: the true eigenvalues of the two-dimensional
harmonic oscillator on R2 are:

2, 4, 4, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 10, 12, . . .

Strands can be used to find and evaluate the eigenfunctions. The following
code yields similar graphs as in figure 4.9.

1 from strands import Schrodinger2D, Rectangle
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 xs = np.linspace(-9.5, 9.5, 200)
6 ys = np.linspace(-9.5, 9.5, 200)
7 X, Y = np.meshgrid(xs, ys)
8

9 harmonic = Schrodinger2D(
10 lambda x, y: x*x + y*y, Rectangle(-9.5, 9.5, -9.5, 9.5),
11 gridSize=(40, 40), maxBasisSize=30)
12

13 for E, f in harmonic.eigenfunctions(10):
14 plt.pcolormesh(X, Y, f(X, Y))
15 plt.show()

Figure 4.9 plots a basis for all eigenfunctions corresponding to eigenvalue
λ6 = λ7 = λ8 = λ9 = 8. In the left-most column, the basis for the eigenfunctions
on the square domain [−5, 5]× [−5, 5] can be seen, and in the right-most column
the basis found on a circular domain around zero with radius 5. We have
opted here for a smaller domain, not because of computational cost (on the
larger domain these eigenfunctions can be drawn just as quickly), but for visual
usefulness. On a larger domain, the interesting center part of the image would
be a lot smaller and thus less visible.

Upon a first viewing of these eigenfunctions (left and right columns), one may
be surprised that these are different. But, as the eigenspace corresponding to
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eigenvalue 8 is multidimensional, the basis is no longer unique. To be able to
compare these results we have introduced the middle column. Here, a linear
combination of basis functions from the rectangular domain is calculated such
that we obtain the same basis functions as found on the circular domain. This
illustrates some of the challenges when trying to compare or numerically verify
eigenfunctions.

4.2.3.2 Zero potential

Analogous to section 4.1.1.1, the next example we will study is the Schrödinger
equation with a zero potential. Here the equation simplifies to:

−∇2ϕ(x, y) = λϕ(x, y)

on the domain Ω, with homogeneous Dirichlet boundary conditions.

If the domain Ω is the rectangle [0, π] × [0, π], exact solutions can be ob-
tained with separation of variables. This gives ∀i, j ∈ N+ that i2 + j2 is
an eigenvalue of this Schrödinger problem with corresponding eigenfunction
ϕ(x, y) = sin(ix) sin(jy).

Not much has to be changed from the previous code samples to solve this
problem.

1 from strands import Schrodinger2D, Rectangle
2 from math import pi
3

4 schrodinger = Schrodinger2D(
5 lambda x, y: 0, Rectangle(0, pi, 0, pi),
6 gridSize=(32, 32), maxBasisSize=32)
7 print(schrodinger.eigenvalues(10))

In figure 4.10, the results for the Schrödinger problem with zero potential are
visualized. Unsurprisingly, our method works extremely well for this. The main
reason can be found in the fact that the basis functions Matslise calculates
on each line are exactly sin(x), sin(2x), sin(3x). . . and analogous for y. These
functions are able to exactly represent the true eigenfunctions sin(ix) sin(jy)
on each line.

For non-rectangular domains with the zero potential, the story is different. Let
us consider the Schrödinger equation with the zero potential and the circular
domain around (0, 0) with radius 1 and homogeneous Dirichlet boundary
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Figure 4.10: This graph displays the results of our new method for the zero
potential on the square [0, π] × [0, π], for a fixed grid size of N = 32 and a
varying basis size. Notice the zoomed-in y-axis, close to the machine precision
of 2−53.
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Figure 4.11: This graph displays the results of our new method for the zero
potential on the circular domain around (0, 0) with radius 5, for varying grid
and basis sizes. Notice the shifted y-axis, to larger errors.
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conditions. The exact eigenvalues are known as the squares of the roots of the
Bessel functions. See section 3.3.2.2 for the full symbolic calculation.

The relative errors of the first hundred eigenvalues found with our new method
are shown in figure 4.11. We have tested this with the grid size and maximal
basis size both equal to 32, 64 or 128. The results are less impressive than for
rectangular domains as the maximal accuracy reached is somewhere around
10−6. But nevertheless, being able to compute these values at all is quite
unique.

The behavior we observe in figure 4.11 is concerning. The method seems
to be unable to further improve accuracy, even if parameters which should
result in more accurate approximations are used. The eigenvalues found with
N = K = 128 are not consistently more accurate than the values found with
N = K = 64.

Determining the source of these inaccuracies is difficult. The graphs are
reminiscent of those in figure 4.2 where we used a high order finite difference
scheme. There, the high order scheme (wrongly) assumed the eigenfunctions
to be identically zero outside the domain. In our case, no such assumption
is explicitly made. Implicitly however, for grid-lines close to the boundary of
the disc, only a few basis functions are available. On these lines, it is thus
impossible to accurately represent the sought eigenfunctions. We suspect this to
introduce unwanted boundary effects. It would explain the similarities between
figure 4.11 and figure 4.2.

4.2.3.3 Hénon–Heiles potential

Another often used test problem is the Hénon–Heiles system. In the context
of time-independent two-dimensional Schrödinger equations the potential in
question is given as:

V (x, y) = x2 + y2 +
√

5
30 (3yx2 − y3). (4.21)

We refer back to section 3.4.4, where we also considered this potential.

In [102], the authors remark to take care when choosing the size of the domain.
This should not be too small to allow the eigenfunctions to converge to zero on
the boundary. But it should neither be too large, because this can generate
some physically nonsensical eigenvalues. In [102], the authors simply use the
domain [−10, 10] × [−10, 10] and leave it at that. Looking at the available
literature about this problem, we find for example [24]. Here, the proposed
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Figure 4.12: A contour plot of the po-
tential of the Hénon–Heiles problem as
in equation (4.21).

method does not use a clear defined boundary, but uses basis functions with
infinite support. However, the interesting regions of these basis functions are
only present in a radius much smaller than 10 around zero. In [18] the grid is
limited to a [−6, 6] × [−6, 6] domain, and in [8], the authors follow [18]. For
this experiment we will also use a [−10, 10] × [−10, 10] domain. A contour plot
of this potential can be seen in figure 4.12.

The code for solving this problem should be familiar by now.

1 from strands import Schrodinger2D, Rectangle
2 from math import sqrt
3

4 def V(x, y):
5 return x*x + y*y + sqrt(5)/30 * y * (3*x*x - y*y)
6

7 henon = Schrodinger2D(V, Rectangle(-10, 10, -10, 10),
8 gridSize=(48, 48), maxBasisSize=32)
9 print(henon.eigenvalues(10))

In figure 4.13, the relative errors obtained with our method our displayed for
this experiment. We used the results from [102] as reference. Before analyzing
these results, we need to mention that for N = K = 32 and N = K = 48,
our method found many nonsensical small eigenvalues. We know that they
have no physical meaning because the corresponding eigenfunctions are only
non-zero inside the valleys at the boundary. These unwanted eigenvalues would
disappear if the domain were a little smaller.



4.2. Strands: line-based collocation method 213

0 1 5 10 20 50

2−42

2−32

2−22

2−12

re
la

tiv
e

er
ro

r

N = 32

K = 16
K = 32
K = 48

0 1 5 10 20 50

2−42

2−32

2−22

2−12

re
la

tiv
e

er
ro

r

N = 48

0 1 5 10 20 50
eigenvalue

2−42

2−32

2−22

2−12

re
la

tiv
e

er
ro

r

N = 64

Figure 4.13: These graphs display the relative errors when we compare the
results from our method with those from [102] for the Hénon–Heiles system
on the domain [−10, 10] × [−10, 10]. For the parameters N = K = 32 and
N = K = 48, our method found some physically nonsensical eigenvalues and
therefore are missing from the plots.
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Ignoring these special cases allows us to interpret the graphs from figure 4.13.
Even on a small grid N = 48 we are able to accurately determine the eigenvalues.
We also see that for the high eigenvalues increasing the grid size or basis size
seems to have no effect. This is unexpected and seems to indicate that maybe
the reference values are not perfect. The relative error for these high eigenvalues
is < 2−32 ≈ 10−10, which is nonetheless extremely accurate.

4.2.3.4 Ixaru’s potential

Next, we will consider the following Schrödinger problem

−∇ψ + (1 + x2)(1 + y2)ψ = Eψ

on [−5.5, 5.5] × [−5.5, 5.5] with homogeneous Dirichlet boundary conditions, as
in [47] and section 3.4.3.

The eigenvalues can be approximated with the following code. This program
runs in less than a second. The resulting approximations agree up to all digits
reported in [47].

1 from strands import Schrodinger2D, Rectangle
2

3 def V(x, y):
4 return (x**2 + 1) * (y**2 + 1)
5

6 ixaru = Schrodinger2D(V, Rectangle(-5.5, 5.5, -5.5, 5.5),
7 gridSize=(40, 40), maxBasisSize=30)
8 print(ixaru.eigenvalues(13))

In figure 4.14, we study the relative error of the first 25 eigenvalues. Since no
sufficiently accurate eigenvalues are available, we have to calculate the reference
values ourselves. For this, we use Strands with N = 90 and K = 40. This
computation takes a little less than one minute. We provide these reference
eigenvalues in table 4.1.

The interpretation of the relative errors from figure 4.14 is similar to previous
discussions. Our method is able to reach close to machine precision, with
relatively little computational work. The used grids don’t need to be dense to
obtain these results. Visually, we notice that the relative error for the higher
eigenvalues with N = 50 and K = 35 is close to 10−9 ≈ 2−30.

As a last example program, we compute three eigenfunctions corresponding
to the highest computed eigenvalues E23, E24 and E25. The graphs for these
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Figure 4.14: These graphs display the relative errors for Ixaru’s problem in
section 4.2.3.4 for the first 25 eigenvalues. For N = 20, the results for K = 35
are omitted, as these are exactly the same as for K = 20.
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E0 = 3.195918085200 E12 = 13.332331271155
E1 = E2 = 5.526743874395 E13 = E14 = 14.348268533253

E3 = 7.557803326786 E15 = 14.450478721981
E4 = 8.031272340314 E16 = 14.580556315644
E5 = 8.444581361570 E17 = E18 = 16.151419224568

E6 = E7 = 9.928061056952 E19 = 16.517192463374
E8 = 11.311817050618 E20 = 16.564871925909
E9 = 11.311817050619 E21 = E22 = 17.894578279407
E10 = 12.103253578719 E23 = 18.583391734468
E11 = 12.201178967971 E24 = E25 = 18.756204273611

Table 4.1: Reference eigenvalues of the problem from section 4.2.3.4, computed
with N = 90 and K = 40.

eigenfunctions can be found in figure 4.15. We notice the clear oscillatory
behavior of these functions. To generate similar graphs yourself the following
code can be used.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 xs = np.linspace(-5.5, 5.5, 200)
5 ys = np.linspace(-5.5, 5.5, 200)
6 X, Y = np.meshgrid(xs, ys)
7

8 for E, f in ixaru.eigenfunctions(26)[23:]:
9 plt.pcolormesh(X, Y, f(X, Y))

10 plt.show()

4.2.4 Runtime analysis
Throughout the development of this new method, we have focused upon keeping
the matrices small. The idea is that finding eigenvalues of a (sparse) matrix is
quite expensive, definitely more expensive than all other steps. But it would be
careless to take this assumption at face value without more thorough analysis.
In section 4.2.3, we have already seen that our method can reach the same
accuracy as a finite difference scheme with a smaller sparse matrix in the
end. So, if all steps to construct the sparse problem are almost negligible in
comparison to finding eigenvalues of that sparse system, then our method will
be faster for the same accuracies.
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Figure 4.15: Eigenfunctions corresponding to the eigenvalues E23, E24 and E25.
As E24 = E25, any linear combination of the two rightmost eigenfunctions is
an eigenfunction as well.

As an experiment, we will take a look at the Hénon–Heiles problem from
section 4.2.3.3 on the square domain [−6, 6] × [−6, 6] on a 64 × 64 grid and a
maximum basis size of 48. We have run a profiler on our program to solve this
problem. Our program consists of two main parts. First, the grid is constructed
and the basis functions on each grid line are computed. Second, we employ
spectra to find the eigenvalues of the resulting sparse matrix. For the second
part, we have two options. We can find the largest eigenvalues of the shifted
inverse matrix. Or, with the implicitly restarted Arnoldi method, we can select
only the smallest eigenvalues while converging. The first technique has much
better convergence, but is more expensive because in each step a linear system
has to be solved. For many problems the second technique also converges to
the true smallest eigenvalues, but the convergence is less reliable and slower.
Yet, the final runtime may be faster because no system of equations has to be
solved.

To evaluate these differences, we have solved this problem 20 times with each of
the techniques (selecting the smallest eigenvalues versus using the shifted inverse
matrix). With the first technique, our program had an average total runtime of
3.295 s and with the second technique the total runtime rose to 8.700 s. Using
only these numbers to draw conclusions may be a little premature.

In both cases, the construction of the grid and the determination of the basis
functions are identical. In the following table we have summarized the averaged
results from the profiler. All reported times are the average of 20 runs, with
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no deviation of more than 5% between runs.

calls runtime
construct grid and solve one-dimensional problems 1 531 ms

finding a basis on a single grid line 128 436 ms
evaluate each eigenfunction in all grid points 6144 89 ms

The ‘calls’ column contains the total number of times that function was executed.
The ‘runtime’ column contains the total time that was spent inside this function.
So the construction of the grid took 531 ms and was executed once (per run).
On each grid line, the basis functions had to be found. Because we have
chosen a 64 × 64 grid, the routine to find this basis was called 128 = 64 + 64
times. In this routine our program constructs a Matslise object to find the
first 48 eigenvalues. For each of these eigenvalues the eigenfunction is also
calculated, but not yet evaluated. The evaluation of these functions is done
a few moments later when constructing the relevant Bx and By matrices. A
total of 6144 = 48 · 128 eigenfunctions were evaluated with a total runtime
of 89 ms. The other steps within this construction (such as determining the
boundaries of the domain, allocating matrices or keeping track of grid points)
only took 6 ms on average. So this table contains the most expensive functions
in the construction of the problem.

To compute the eigenvalues themselves, we will first study the technique of the
implicitly restarted Arnoldi iteration with selection of the lowest 100 eigenvalues.
For this Hénon–Heiles problem, the correct results are found. However, we
expect that the convergence may be slow. The following table contains the
profiler’s summary.

calls runtime
computing eigenvalues 1 2772 ms

SPECTRA compute eigenvalues 1 2656 ms
perform operation 1316 1151 ms

We see that the computation for this part took 2.772 s. Together with the
construction, this gives a total runtime of 3.295 s. We also see that spectra
called our matrix-free operation procedure 1 316 times. The computation of
this procedure took less than half the total time, the other time is spent inside
the implicitly restarted Arnoldi iteration algorithm of spectra.

Let us also consider the following table, where the summary of the profiler
is displayed when the eigenvalue algorithm is applied to the shifted inverse
matrix. This program uses the pseudocode from algorithm 1.
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calls runtime
computing eigenvalues (shiftInvert) 1 8289 ms

sparse LU-decomposition 1 3731 ms
SPECTRA compute eigenvalues 1 4529 ms

perform operation 353 4166 ms

Here we see that the convergence is faster, it is to say, fewer operations are
needed. Although, the runtime of 8.289 s is much higher. The cause is twofold.
First we see that before calling the eigenvalue routine, we have to compute the
sparse LU-decomposition of the involved matrix. This alone takes more time
than the computation without inverse matrix. Even though almost four times
fewer operations are needed to reach convergence, each operation is almost
fourteen times slower. This negates all benefits of the ‘faster’ convergence.

The main take-away from these tables is that the construction time is dwarfed
by the time needed to solve the matrix eigenvalue problem, regardless of the
method (with or without shift-invert mode) used. Though, only looking at fixed
parameters may be misleading. In figure 4.16 we have plotted the true runtime
of the construction time and the computation of the eigenvalues (with both
techniques) for different parameters N ∈ {32, 48, 64, 80, 96, 112} and K = 3

4N .

In this figure we see that the construction of the grid (with solving all one-
dimensional problems) has an experimental time complexity of O(N2). This is
in line with our expectation. We have 2N one-dimensional problems to solve,
and for each of these problems 3

4N eigenvalues are requested. Now, in principle
we have a O(N3) runtime complexity, because we will evaluate each of the
3
2N

2 eigenfunctions in N points. However, as seen from the detailed profiler
results from before, this evaluation is quite efficient and as such, this theoretic
cubic complexity will not be present in practice.

When we are using the shifted inverse matrix to find eigenvalues, we can
see an experimental runtime of O(N5). A dense LU-decomposition has a
cubic complexity in the size of the involved matrix. In our case a sparse LU-
decomposition is calculated of the N2 ×N2 sparse matrix. This decomposition
is able to exploit some sparsity and as such, we hope (and expect) a speed-up.
Indeed, this is what we see with the measured O(N5) complexity.

When the eigenvalues are found by selecting the smallest values during conver-
gence, a theoretical analysis is more difficult. In a single step, our matrix-free
operation computes deflated vectors and a matrix-vector product. The former
is computed with sparse basis vectors, the latter is computed with a sparse
matrix. Let us focus on the main matrix-vector product. This matrix is given in
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Figure 4.16: The Hénon–Heiles problem on a [−6, 6] × [−6, 6] square domain is
solved for parameters N ∈ {32, 48, 64, 80, 96, 112} and K = 3

4N . The average
runtime (over five runs) of the construction of the grid (with solving all one-
dimensional subproblems) and of the computation of the eigenvalues with and
without inverting the matrix are reported.
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the right-hand side of equation (4.16). The first term is a block diagonal-matrix
with N times a K × K-block. The second term has a similar but permuted
structure. Therefore, each row contains at most 2K − 1 non-zero entries, for
a total of O(NK2) = O(N3) non-zero entries. The bases of the deflation
spaces are similarly sparse. For determining the total time complexity, ‘only’
an estimate for the number of operations is needed. However, in most analyses
of eigenvalue solvers, it is assumed that the outer boundary of the spectrum is
selected in each step, not the smallest values. So finding reliable estimates is
quite difficult. Using the experiment from figure 4.16, we can suspect that the
number of steps before convergence is O(N), which is the square root of the
matrix size.

In any case, our focus on reducing the matrix-size has been worthwhile. The
main bottleneck is still the computation of the eigenvalues for which many well-
tested extremely-efficient and even parallelly distributed algorithms exist. In
comparison to [102], our method is able to reach the same or higher accuracies
(as discussed in section 4.2.3) with smaller grid sizes, and thus matrix sizes,
which in turn reduces the total runtime.

4.2.5 The name Strands
When developing and publishing a new method maybe one of the most difficult
challenges (besides developing, implementing, testing and analyzing the method)
is probably finding a fitting name. As mathematicians, we may sometimes forget
the importance of a recognizable name. So, let us take a look at some names we
encounter in the area of Schrödinger equations. For the one-dimensional method
we have for example SLEDGE, SLEIGN, SLCPM12 and Matslise itself. For the
system of coupled equations we have LILIX or MatSCS. We have not found
any packages with memorable names for the specific two-dimensional problem.
If we look a bit further to the libraries we used, then we encounter: Eigen
(C++-library for linear algebra), spectra (C++-library for finding eigenvalues),
PETSc and SLEPc (scalable C-libraries for linear algebra). We also came across
NumPy and SciPy as numerical libraries in python. Or we can look at the wider
scientific computing community for inspiration: BLAS and LAPACK (interfaces
for basic linear algebra), Armadillo (C++-library for linear algebra), GNU GSL
(scientific computing in C), SageMath (a computer algebra system), Maple
(program for symbolic computation), FEniCS with DOLPHIN (platform to solve
partial differential equations), OpenFOAM (for computational fluid dynamics),

A name should be short and be more or less relevant to the method. The
names I like the most are the pronounceable fun names (with bonus points if it
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is a backronym7) like LILIX, Spectra, Sage and FEniCS.

When first developing the ideas for this method, I always saw it as a loom,
with warp and weft threads. The tension ensures that in the grid points these
threads intersect. There are many fun words in the weaving-industry for which a
backronym could be found, but these are always quite niche and not well-known.
After a short conversation with ChatGPT, it proposed ‘Stranded Schrödinger
Solver’ as name. And I liked the word strand a lot. It is synonymous with
thread and wire, so it fits definitely with my mental model of the method. But,
strand is also the Dutch word for beach, which brings the ‘fun’ aspect back to
the table. And as our method uses many strands together, this gives us:

Strands
Standing waves approximations for the n-dimensional
Schrödinger problem (with n = 2 and maybe in the future
n = 3).

4.3 Conclusion
In this chapter we have developed and implemented Strands to approxi-
mate eigenvalues and eigenfunctions of the two-dimensional time-independent
Schrödinger equation. We drew inspiration from a method solely based upon
finite difference approximations. This inspiring method was able to reach
extremely accurate results with relatively little computational effort. Our new
method was able to reach the same accuracies. In fact, these extremely accurate
results were achieved, while using smaller matrix problems. This resulted in
an overall significantly faster algorithm.

In this new method, we have strived to avoid or fix some issues with the method
from chapter 3. We believe our method to be easier to implement than Ixaru’s
two-dimensional method. In the numerical experiments, Strands achieved more
accurate results with similar computational cost. However, comparing these
methods directly is difficult. In chapter 3, we have studied a shooting method
which is able to target specific eigenvalues. On the other hand, our method
from section 4.2 translates the problem into a direct matrix eigenproblem,
similarly to the method from section 4.1.1.

In summary, this new method shows a lot of promise. The numerical experi-
ments illustrate that Strands can reach extreme accuracies with relatively little

7Wikipedia tells us: “a backronym is an acronym formed from an already existing word”.
For example: Spectra stands for “Sparse Eigenvalue Computation Toolkit as a Redesigned
ARPACK.”
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computational effort. Still, we see many ways to further improve upon this
work. Non-rectangular domains definitely need more research: our method
was able to approximate eigenvalues, however the accuracy was significantly
reduced. How we could evaluate eigenfunctions close to the boundary of those
non-rectangular domains is also an open question.

The spurious small eigenvalues we found for some parameters in the Hénon-
Heiles problem may cause some concern. When trying out our method on other
problems, for some sets of parameters similar small wrong values are found.
We are not yet certain what causes this phenomenon.

We believe the study of this method to be valuable future work. It combines
the strengths from Ixaru’s method from chapter 3, and the finite difference
scheme discussed in section 4.1.1.
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Closing remarks

Looking back at this thesis, and the researching years preceding it, fills me with
many emotions: both positive, as well as less positive. First and foremost, I am
quite proud of the results we were able to achieve. In chapter 2, we have started
from a well-established and thoroughly studied technique for one-dimensional
Schrödinger equations, and we improved upon known results. Both theoretical
and practical advances were made. In chapter 3, we have taken a relatively
new technique and build upon it. Our implementation advances the use of this
technique with some new features. For these, we took some theoretical strides.
One of the results I am most proud of in this thesis is theorem 3.10. Five years
ago, when I implemented this new technique for the first time in matlab, I
was disappointed that it was impossible to ensure one has found all eigenvalues
in a given range. In my master’s thesis I have voiced this missing feature as
a possible idea for future work. Privately, my promotor and I were rather
pessimistic if this issue could ever be fixed. We believed that this method was
too complicated to be able to give any guarantees on the index of eigenvalues.
Despite this pessimism, I am proud that we have persevered and developed
this new theorem 3.10.

During the research for chapters 2 and 3, at times, I was quite demotivated.
Although we were advancing and building improvements, both techniques
were not mine. I had difficulties finding ownership. The real low-point in
my PhD-research was in August 2020. I was browsing through the literature
and found an article which was able to solve the two-dimensional Schrödinger
equations faster and more accurate than we ever could. Unavoidably, many
existential questions were raised. Getting through this crisis of faith was
definitely not easy. It took some time, but a few long months later, I found
renewed inspiration and goesting8. In my archives, the earliest draft I can

8This is a very Flemish word. It loosely translates to ‘with an enthusiastic motivation’.
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find for ideas for a new method for two-dimensional Schrödinger equations
dates from February 2021. And in the subsequent years I have learned that,
maybe unsurprisingly, developing a new method is hard. We went through
many iterations. In chapter 4, you can read the (for now) final version.

Looking forward
Writing about what the future will bring is, what we would call in Dutch,
looking at coffee grounds9. Without sounding overly ambitious: I hope our
new method and our implementation may be useful for someone somewhere.

As all things in life, our new method is not perfect. One of the more user-
friendly features of our improvements to the method from chapter 3, is the
ability to automatically select the needed sector sizes to ensure a requested
accuracy. In chapter 4, the grid size is still an open parameter. The relation of
this size to the numerical accuracy is not yet thoroughly researched. Also, in
section 4.2, we were adamant that our new technique works on non-uniform
grids with varying basis sizes on each grid line. Yet, we studied this only to a
limited extent. Ideally, some automatic grid selection should be implemented.
In vague terms, on regions of the domain where the sought eigenfunctions are
interesting, the used grid should be denser. Implementing a heuristic for this
may be straightforward, but being able to guarantee that a given accuracy
is obtained with a particular grid is difficult. Another improvement to this
technique may be found in the choice of basis functions on grid lines. On the
line x = xi, in chapter 4, we solve a one-dimensional Schrödinger problem
with potential 1

2V (xi, y). In each grid point, the value of the potential is split
between both intersecting grid lines. In principle, this split does not need to
be equal. Maybe other choices can be defended as well.

Besides direct improvements to the method itself, we believe more fundamentally
different ideas can be explored. Does the grid need to be square? How can this
method be used to solve time-dependent Schrödinger equations10? Can this
technique be extended to general linear operators? What changes when solving
three-dimensional problems?

Concerning the three-dimensional problem, we have studied some preparatory
ideas. Following the two-dimensional method, we place a rectangular grid
on the domain, with three grid lines per grid point. As a basis, we could

9In English, more commonly: reading tea leaves.
10For one-dimensional time-dependent problems, Matslise 2.0 is used in [62].
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use eigenfunctions of one-dimensional Schrödinger problems with a three-way
split of the potential. For example, on the line x = xi ∧ y = yj we solve the
one-dimensional Schrödinger problem with potential 1

3V (xi, yj , z). To find the
eigenvalues we have to solve (analogous to (4.12))

BxΛxcx + ByΛycy + BzΛzcz = EBxcx = EBycy = EBzcz.

The technique to solve this equation, as described in section 4.2.1.3, generalizes
elegantly for more dimensions. In summary, approximating eigenvalues is quite
straightforward. The largest issues we have found in a first exploratory study
is the computation of an eigenfunction in arbitrary points. No longer can we
use the same trick to solve a much smaller Schrödinger problem with calculated
boundary conditions. Eigenfunction solutions are only known upon the grid
lines, not on the planer faces of each of the grid cells.

On a more personal note, the researching for and the writing of this thesis has
taught me a great deal. Some lessons were a confirmation of things I already
knew. For example, I really like solving problems. When a new challenge
crosses my path, far too often I think: “It could not be that hard, right?” And,
after spending anything between a few hours and a few years trying to solve
the problem, I have to conclude: “Well, it definitely is that hard.”

One of the other lessons I learned about myself is that I like collaborating. In
researching this thesis, it was almost always only my promotor and I. Now,
I am very fortunate to get along really well11 with my promotor. Yet, many
times I felt that I was missing some more people to collaborate with, to bounce
ideas around with, to just talk with...

The last lesson I want to share is that I easily get distracted with interesting
problems. During the past five years, far too many times I was very busy not
doing my PhD-research. All these distractions are out of the scope of this text.
However, if you, the reader, want to talk with me, and don’t know what about,
then just ask me something about: mathematical origami, plagiarism detection
in source code, sunlight on crop fields for agroforestry, basins of convergence
and Julia sets, ray tracing in mathematical figures, hyperbolic geometry (in
VR), the roots of the Littlewood polynomials, picking numbers in a lottery,
dynamical systems in arbitrary precision, geodesics and shortest paths over
surfaces, computations in non-commutative quantum algebras, Keith numbers,
drawing L-systems. . .

11Of course, I hope (and do believe) that this is symmetric.
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As the last paragraph, I want to thank Marnix once again to be my guide
during this research, to provide invaluable much appreciated feedback and to
give me the freedom to pursue my distractions. But also again, I want to thank
Emilie for being my best friend, for listening to all my troubles and for carrying
my burdens with me.

April 2023
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